Time Series Forecasts Of CO2 Emission Variations In Madagascar Based On 1D-CNN
Abstract
Keywords
Full Text:
PDFReferences
Ritchie, H., Rosado, P., & Roser, M. (2023). CO₂ and greenhouse gas emissions. Our world in data.
Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., ... & Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data Discussions, 2020, 1-3.
Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J., Abernethy, S., Andrew, R. M., ... & Peters, G. P. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature climate change, 10(7), 647-653.
Watch, C. (2023). Historical GHG Emissions (1990–2020). Washington, DC: World Resources Institute.
Markova, M. (2022, April). Convolutional neural networks for forex time series forecasting. In AIP Conference Proceedings (Vol. 2459, No. 1). AIP Publishing.
Guessoum, S., Belda, S., Ferrandiz, J. M., Modiri, S., Raut, S., Dhar, S., ... & Schuh, H. (2022). The short-term prediction of length of day using 1D convolutional neural networks (1D CNN). Sensors, 22(23), 9517.
Lang, C., Steinborn, F., Steffens, O., & Lang, E. W. (2020). Applying a 1D-CNN network to electricity load forecasting. In Theory and Applications of Time Series Analysis: Selected Contributions from ITISE 2019 (pp. 205-218). Springer International Publishing.
Lang, C., Steinborn, F., Steffens, O., & Lang, E. W. (2019). Electricity Load Forecasting--An Evaluation of Simple 1D-CNN Network Structures. arXiv preprint arXiv:1911.11536.
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical systems and signal processing, 151, 107398.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612.
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Zhang, Z., Liu, Y., Gong, Y., & Lu, H. (2019). Forecasting air pollutant concentration levels with deep learning models. Sustainability, 11(7), 2041. https://doi.org/10.3390/su11072041
Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and Greenhouse Gas Emissions. Our World in Data. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
Kiranyaz, S., Ince, T., & Gabbouj, M. (2021). 1D Convolutional Neural Networks and Applications: A Survey. Mechanical Systems and Signal Processing, 151, 107398. https://doi.org/10.1016/j.ymssp.2020.107398
DOI: http://dx.doi.org/10.52155/ijpsat.v53.2.7565
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Harimino Andriamalala RAJAONARISOA

This work is licensed under a Creative Commons Attribution 4.0 International License.