Rethrombosis in COVID-19 patient

Guliko Kiliptari

Abstract


SARS-CoV-2 infection is associated with arterial and venous thrombotic complications. Autopsy findings revealed   microthrombi in multiple organ systems, that may contribute to multisystem organ dysfunction in severe COVID-19.Thrombosis in patients with COVID-19 is due to a cytokine storm, hypoxic injury, endothelial dysfunction and  increased platelet activity. Many difficult mechanisms contributes  formation clots in   vasculature of  multi organs ,

  We presented two different cases of pulmonary artery thrombosis complicated by severe ARDS and rethrombosis in the branches of the pulmonary artery.Both  patient  was  treated  according  PE(pulmonary  embolism)  management  protocol (ESC)

Conclusion: The  multisystem  mechanisms : The complement system , part of the innate immune response , capable of activating the coagulation cascade,  endothelial inflammation, loss of ACE2 and  alteration  of  PAI/tPA balance ,cytokine storm, high levels of the blood clotting protein factor, decreased concentrations of endogenous anticoagulant proteins   increasis  probability  of  new  thrombosis ,  despite  suitable treatment and  prevention

Full Text:

PDF

References


Hammad A., Westacott L., Zaben M. The role of the complement system in traumatic brain injury: a review. J. Neuroinflammation. 2018;15 doi: 10.1186/s12974-018-1066-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

. Huber-Lang M., Lambris J.D., Ward P.A. Innate immune responses to trauma review-article. Nat. Immunol. 2018;19:327–341. doi: 10.1038/s41590-018-0064-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar

Gralinski L.E., Sheahan T.P., Morrison T.E., Menachery V.D., Jensen K., Leist S.R., Whitmore A., Heise M.T., Baric R.S. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9 doi: 10.1128/mBio.01753-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

. Jiang Y., Zhao G., Song N., Li P., Chen Y., Guo Y., Li J., Du L., Jiang S., Guo R., Sun S., Zhou Y. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg. Microbes Infect. 2018;7:77. doi: 10.1038/s41426-018-0063-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

. Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J., Baxter-Stoltzfus A., Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 2020 doi: 10.1016/j.trsl.2020.04.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Ritis K., Doumas M., Mastellos D., Micheli A., Giaglis S., Magotti P., Rafail S., Kartalis G., Sideras P., Lambris J.D. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 2006;177:4794–4802. doi: 10.4049/jimmunol.177.7.4794. [PubMed] [CrossRef] [Google Scholar]

. Ikeda K., Nagasawa K., Horiuchi T., Tsuru T., Nishizaka H., Niho Y. C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 1997;77:394–398. doi: 10.1055/s-0038-1655974. [PubMed] [CrossRef] [Google Scholar]

. Landsem A., Fure H., Christiansen D., Nielsen E.W., Østerud B., Mollnes T.E., Brekke O.L. The key roles of complement and tissue factor in Escherichia coli-induced coagulation in human whole blood. Clin. Exp. Immunol. 2015;182:81–89. doi: 10.1111/cei.12663. [PMC free article] [PubMed] [CrossRef] [Google Scholar]7. Øvstebø R., Hellum M., Aass H.C.D., Trøseid A.M., Brandtzaeg P., Mollnes T.E., Henriksson C.E. Microparticle-associated tissue factor activity is reduced by inhibition of the complement protein 5 in Neisseria meningitidis-exposed whole blood. Innate Immun. 2014;20:552–560. doi: 10.1177/1753425913502099. [PubMed] [CrossRef] [Google Scholar]

Wojta J., Huber K., Valent P. New aspects in thrombotic research: complement induced switch in mast cells from a profibrinolytic to a prothrombotic phenotype. Pathophysiol. Haemost. Thromb. 2003;33:438–441. doi: 10.1159/000083842. [PubMed] [CrossRef] [Google Scholar]

Polley M.J., Nachman R.L. Human complement in thrombin-mediated platelet function: uptake of the C5b-9 complex. J. Exp. Med. 1979;150:633–645. [PMC free article] [PubMed] [Google Scholar]

Sims P.J., Faioni E.M., Wiedmer T., Shattil S.J. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol. Chem. 1988;263:18205–18212. [PubMed] [Google Scholar]

Polley M.J., Nachman R. The human complement system in thrombin-mediated platelet function. J. Exp. Med. 1978;147:1713–1726. [PMC free article] [PubMed] [Google Scholar]

Subramaniam S., Jurk K., Hobohm L., Jackel S., Saffarzadeh M., Schwierczek K., Wenzel P., Langer F., Reinhardt C., Ruf W. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129:2291–2302. doi: 10.1182/blood-2016-11-749879. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

. Hattori R., Hamilton K.K., McEver R.P., Sims P.J. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J. Biol. Chem. 1989;264:9053–9060. [PubMed] [Google Scholar]

. Hamilton K.K., Hattori R., Esmon C.T., Sims P.J. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J. Biol. Chem. 1990;265:3809–3814. [PubMed] [Google Scholar]

Foreman K.E., Vaporciyan A.A., Bonish B.K., Jones M.L., Johnson K.J., Glovsky M.M., Eddy S.M., Ward P.A. C5a-induced expression of P-selectin in endothelial cells. J. Clin. Invest. 1994;94:1147–1155. doi: 10.1172/JCI117430. [PMC free article] [PubMed] [CrossRef] [Google Scholar

Brown E.W., Ravindran S., Patston P.A. The reaction between plasmin and C1-inhibitor results in plasmin inhibition by the serpin mechanism. Blood Coagul. Fibrinolysis. 2002;13:711–714. doi: 10.1097/00001721-200212000-00007. [PubMed] [CrossRef] [Google Scholar

Sakir Ahmed,Olena Zimba.Thrombosis in coronavirus disease 2019 (COVID-19) througf the prism of Virchow,s triad. Clinical Rheumatology ,review article,30 june 2020

Alexander Fletcher-Sandersjöö 1, Bo-Michael Bellander 2 Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review,Thrombosis research.review article.vol 194,P 36-41.october 01.2020

Abe T., Sasaki A., Ueda T., Miyakawa Y., Ochiai H. Complement-mediated thrombotic microangiopathy secondary to sepsis-induced disseminated intravascular coagulation successfully treated with eculizumab a case report. Med. (United States) 2017;96 doi: 10.1097/MD.0000000000006056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Kollias A., Kyriakoulis K.G., Dimakakos E., Poulakou G., Stergiou G.S., Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br. J. Haematol. 2020 doi: 10.1111/bjh.16727. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Cui S., Chen S., Li X., Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020 doi: 10.1111/jth.14830. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020 doi: 10.1016/j.thromres.2020.04.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

.




DOI: http://dx.doi.org/10.52155/ijpsat.v26.1.2985

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Guliko Kiliptari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.