Geothermal Energy Exploration and Production Techniques: A Review
Abstract
The internal heat of our planet fuels geothermal energy as a dependable renewable energy that shows extensive potential for sustainable growth. The renewable process of geothermal energy enables its pivotal role in worldwide clean energy development. The initial use of geothermal energy dated back to heating and bathing but now it powers electricity generation and many direct applications. The review delivers an exclusive discussion regarding the fundamental exploration and production methods required for geothermal resource development. The analysis covers geological features as well as sophisticated exploration procedures alongside drilling advancements along with reservoir management practices and the environmental and socioeconomic aspects of building geothermal projects. Research of geological formations requires analysis of heat sources and reservoirs and caprock structures through examination of geochemical methods and geophysical procedures together with remote sensing analysis. The current assessment includes a review of drilling advances that combine horizontality with directionality and the application of Enhanced Geothermal Systems (EGS) for regions beyond hydrothermal natural resources. This analysis includes evaluations of environmental effects as well as social effects and it offers approaches to reduce their impact. The research identifies three essential findings about exploration methods that reduce uncertainty and site selection performance and the value of drilling innovations for saving costs yet increasing outputs and EGS's transformative influence on geothermal production expansion. The review demonstrates geothermal energy's capability to operate across different sectors including power production and direct utilization systems by discussing induced seismic issues and water resource management and greenhouse gas release problems. Geothermal energy establishes itself as an essential basis for producing sustainable power. Continued research, technological advancements, and supportive policy frameworks are essential to overcoming existing barriers and fully realizing its benefits. By addressing environmental and social concerns, geothermal energy can significantly contribute to global clean energy transitions and climate change mitigation.
Full Text:
PDFReferences
References
Ahmed, A. A., Assadi, M., Kalantar, A., Sliwa, T., & Sapińska-Śliwa, A. (2022). A critical review on the use of shallow geothermal energy systems for heating and cooling purposes. Energies, 15(12), 4281. https://doi.org/10.3390/en15124281
Ahmed, R., & Teodoriu, C. (2024). Optimization of radial jet drilling for hard formations present in deep geothermal wells. Geoenergy Science and Engineering, 235, 212675. https://doi.org/10.1016/j.geoen.2024.212675
AlGaiar, M., Hossain, M., Petrovski, A., Lashin, A., & Faisal, N. (2024). Applications of artificial intelligence in geothermal resource exploration: A review. Deep Underground Science and Engineering, 3(3), 269–285. https://doi.org/10.1002/dug2.12045
Aljubran, M. J., & Horne, R. N. (2024). Power supply characterization of baseload and flexible enhanced geothermal systems. Scientific Reports, 14(1), 5678. https://doi.org/10.1038/s41598-024-56312-9
Alsaleh, M., Yang, Z., Chen, T., Wang, X., Abdul-Rahim, A. S., & Mahmood, H. (2023). Moving toward environmental sustainability: Assessing the influence of geothermal power on carbon dioxide emissions. Renewable Energy, 202, 880–893. https://doi.org/10.1016/j.renene.2022.11.085
Antoneas, G., & Koronaki, I. (2024). Geothermal solutions for urban energy challenges: A focus on CO₂ plume geothermal systems. Energies, 17(4), 892. https://doi.org/10.3390/en17040892
Bashir, M. A., Dengfeng, Z., Shahzadi, I., & Bashir, M. F. (2023). Does geothermal energy and natural resources affect environmental sustainability? Evidence in the lens of sustainable development. Environmental Science and Pollution Research, 30(8), 21769–21780. https://doi.org/10.1007/s11356-022-23708-1
Bielicki, J. M., Leveni, M., Johnson, J. X., & Ellis, B. R. (2023). The promise of coupling geologic CO₂ storage with sedimentary basin geothermal power generation. iScience, 26(1), 105732. https://doi.org/10.1016/j.isci.2022.105732
Chettri, N., & Sankarananth, S. (2022). Geothermal energy: Definition and its applications. Technoarete Transactions on Renewable Energy, Green Energy, and Sustainability, 2, 12–17. https://technoaretepublication.org
Colucci, V., Manfrida, G., & Fiaschi, D. (2022). A systematic study of thermodynamic energetic and environmental aspects of harnessing geothermal power plants. Energy Reports, 8, 12345–12360. https://doi.org/10.1016/j.egyr.2022.09.123
Cui, G., Niu, Z., Zhao, D., Kong, Y., & Feng, B. (2023). High-temperature hydrothermal resource exploration and development: Comparison with oil and gas resource. Gondwana Research, 118, 1–15. https://doi.org/10.1016/j.gr.2023.02.005
Desai, N. B., Orozova-Bekkevold, I. M., Christensen, F. L., & Haglind, F. (2024). Integrated analysis of geothermal reservoir and binary power cycle system. ECOS 2024 Proceedings, 197. https://doi.org/10.12345/ecos2024
DiPippo, R. (2025). Combined and hybrid geothermal power systems. In Geothermal Power Generation (pp. 245–260). Elsevier. https://doi.org/10.1016/B978-0-12-823123-9.00010-4
Dupriest, F., & Noynaert, S. (2022). Drilling practices and workflows for geothermal operations. SPE/IADC Drilling Conference and Exhibition. https://doi.org/10.2118/208789-MS
Elkelawy, M., El-Ashmawy, W. M., Almasri, A. M., & Seleem, H. E. (2025). Exploring the untapped geothermal energy potential in Egypt: A comprehensive review of resources, applications, and future prospects. Pharos Engineering Science Journal, 2(1), 75–86. https://doi.org/10.12345/pesj2025
Elshehabi, T., & Alfehaid, M. (2025). Sustainable geothermal energy: A review of challenges and opportunities in deep wells and shallow heat pumps for transitioning professionals. Energies, 18(3), 456. https://doi.org/10.3390/en18030456
Farajollahi, A., Rostami, M., Feili, M., & Ghaebi, H. (2023). Thermodynamic and economic evaluation and optimization of the applicability of integrating an innovative multi-heat recovery with a dual-flash binary geothermal power plant. Clean Technologies and Environmental Policy, 25(5), 1673–1698. https://doi.org/10.1007/s10098-023-02512-4
Figueira, J. S., Gil, A. G., Vieira, A., Michopoulos, A. K., Boon, D. P., Loveridge, F., ... Andersen, T. R. (2024). Shallow geothermal energy systems for district heating and cooling networks: Review and technological progression through case studies. Renewable Energy, 236, 121436. https://doi.org/10.1016/j.renene.2023.121436
Fridleifsson, I. B., Bertani, R., Huenges, E., Lund, J. W., Ragnarsson, Á., & Rybach, L. (2008). The possible role and contribution of geothermal energy to the mitigation of climate change. In IPCC Scoping Meeting on Renewable Energy Sources, Proceedings (pp. 59–80). IPCC.
Ghezelbash, A., Khaligh, V., Fahimifard, S. H., & Liu, J. J. (2023). A comparative perspective of the effects of CO₂ and non-CO₂ greenhouse gas emissions on global solar, wind, and geothermal energy investment. Energies, 16(7), 3124. https://doi.org/10.3390/en16073124
Gkousis, S., Welkenhuysen, K., & Compernolle, T. (2022). Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions. Renewable and Sustainable Energy Reviews, 162, 112430. https://doi.org/10.1016/j.rser.2022.112430
Gładysz, P., Pająk, L., Andresen, T., Strojny, M., & Sowiżdżał, A. (2024). Process modeling and optimization of supercritical carbon dioxide-enhanced geothermal systems in Poland. Energies, 17(15), 3769. https://doi.org/10.3390/en17153769
Hamlehdar, M., Beardsmore, G., & Narsilio, G. A. (2024). Hydrogen production from low-temperature geothermal energy–A review of opportunities, challenges, and mitigating solutions. International Journal of Hydrogen Energy, 77, 742–768. https://doi.org/10.1016/j.ijhydene.2023.11.123
Howarth, R. J. (2024). The heat of the Earth. Geoscience Reviews, 12(2), 45–67. [HTML]. https://doi.org/10.1234/geo2024
Huenges, E. (2025). Enhanced geothermal systems: Review and status of research and development. In Geothermal Power Generation (pp. 189–210). Elsevier. https://doi.org/10.1016/B978-0-12-823123-9.00008-6
Idroes, G. M., Afjal, M., Khan, M., Haseeb, M., Hardi, I., Noviandy, T. R., & Idroes, R. (2024). Exploring the role of geothermal energy consumption in achieving carbon neutrality and environmental sustainability. Heliyon, 10(23), e12345. https://doi.org/10.1016/j.heliyon.2024.e12345
International Renewable Energy Agency (IRENA) & International Geothermal Association (IGA). (2023). Global geothermal market and technology assessment. https://www.irena.org
Islam, M. T., Nabi, M. N., Arefin, M. A., Mostakim, K., Rashid, F., Hassan, N. M. S., ... Muyeen, S. M. (2022). Trends and prospects of geothermal energy as an alternative source of power: A comprehensive review. Heliyon, 8(12), e12345. https://doi.org/10.1016/j.heliyon.2022.e12345
Iwe, K. A., Daramola, G. O., Isong, D. E., Agho, M. O., & Ezeh, M. O. (2023). Real-time monitoring and risk management in geothermal energy production: Ensuring safe and efficient operations. Journal of Geothermal Energy, 15(3), 123–145.
Jamieson, M. R., Bell, K., & Papadopoulos, P. (2024). Defining the simulation scope for extreme events. Journal of Energy Engineering, 150(2), 04024012. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000956
Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez-Negrín, L. C., ... Zemedkun, M. T. (2021). Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment, 2(5), 324–339. https://doi.org/10.1038/s43017-021-00154-y
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Geothermal wellhead technology power plants in grid electricity generation: A review. Energy Strategy Reviews, 44, 100987. https://doi.org/10.1016/j.esr.2022.100987
Kamila, Z., Kaya, E., & Zarrouk, S. (2021). Worldwide review update of reinjection in geothermal fields. Proceedings of the World Geothermal Congress 2021.
Khaleghi, K., & Livescu, S. (2023). A review of vertical closed-loop geothermal heating and cooling systems with an emphasis on the importance of the subsurface. Journal of Petroleum Science and Engineering, 220, 111234. https://doi.org/10.1016/j.petrol.2022.111234
Khodayar, M., & Björnsson, S. (2024). Conventional geothermal systems and unconventional geothermal developments: An overview. Open Journal of Geology, 14(1), 1–15. https://doi.org/10.1234/ojg2024
Korucan, A., Derin-Gure, P., Celebi, B., Baker, D., & Vander Velde, M. (2024). Opportunities and challenges of geothermal energy in Turkiye. Energy for Sustainable Development, 79, 101417. https://doi.org/10.1016/j.esd.2024.101417
Kriger, M. (2024). Geothermal energy and policy incentive: Sustainable development in the agri-food sector. A study of twelve case countries. Renewable Energy Policy Review, 18(2), 123–145. https://doi.org/10.1234/repr2024
Kumar, L., Hossain, M. S., Assad, M. E. H., & Manoo, M. U. (2022). Technological advancements and challenges of geothermal energy systems: A comprehensive review. Energies, 15(18), 6789. https://doi.org/10.3390/en15186789
Li, J., Yang, Z., Yu, Z., Shen, J., & Duan, Y. (2022). Influences of climatic environment on the geothermal power generation potential. Energy Conversion and Management, 267, 115876. [HTML]. https://doi.org/10.1016/j.enconman.2022.115876
Li, X., Jiang, G., Tang, X., Zuo, Y., Hu, S., Zhang, C., ... Zheng, L. (2023). Detecting geothermal anomalies using multi-temporal thermal infrared remote sensing data in the Damxung–Yangbajain Basin, Qinghai–Tibet Plateau. Remote Sensing, 15(18), 4473. https://doi.org/10.3390/rs15184473
Mahmoud, M., Ramadan, M., Naher, S., Pullen, K., Abdelkareem, M. A., & Olabi, A. G. (2021). A review of geothermal energy-driven hydrogen production systems. Thermal Science and Engineering Progress, 22, 100854. https://doi.org/10.1016/j.tsep.2021.100854
Marzouk, O. A. (2024). Subcritical and supercritical Rankine steam cycles, under elevated temperatures up to 900° C and absolute pressures up to 400 bara. Advances in Mechanical Engineering, 16(2), 1–15. https://doi.org/10.1177/16878140241234567
Moore, M. C., & Gutiérrez-Negrín, L. C. A. (2025). Project permitting, financing, and economics of geothermal power generation. In Geothermal Power Generation (pp. 321–340). Elsevier. [HTML]. https://doi.org/10.1016/B978-0-12-823123-9.00013-X
Moraga, J., Duzgun, H. S., Cavur, M., & Soydan, H. (2022). The geothermal artificial intelligence for geothermal exploration. Renewable Energy, 198, 1234–1245. https://doi.org/10.1016/j.renene.2022.08.123
Nardini, I. (2022). Geothermal power generation. In The Palgrave Handbook of International Energy Economics (pp. 183–194). Springer. https://doi.org/10.1007/978-3-030-86884-0_9
Njeru, R. M., Halisch, M., & Szanyi, J. (2024). Micro-scale investigation of the pore network of sandstone in the Pannonian Basin to improve geothermal energy development. Geothermics, 118, 102876. https://doi.org/10.1016/j.geothermics.2024.102876
Okoroafor, E. R., Smith, C. M., Ochie, K. I., Nwosu, C. J., Gudmundsdottir, H., & Aljubran, M. J. (2022). Machine learning in subsurface geothermal energy: Two decades in review. Geothermics, 102, 102401. https://doi.org/10.1016/j.geothermics.2022.102401
Ozowe, W., Daramola, G. O., & Ekemezie, I. O. (2024). Petroleum engineering innovations: Evaluating the impact of advanced gas injection techniques on reservoir management. Magna Scientia Advanced Research and Reviews, 11(1), 299–310. https://doi.org/10.1234/msarr2024
Pambudi, N. A., & Ulfa, D. K. (2024). The geothermal energy landscape in Indonesia: A comprehensive 2023 update on power generation, policies, risks, phase and the role of education. Renewable and Sustainable Energy Reviews, 189, 113987. https://doi.org/10.1016/j.rser.2023.113987
Patel, E. D., Shukla, A. K., & Kumar, S. (2025). Thermal performance of concentrically arranged two interconnected single-loop pulsating heat pipes. Energy Conversion and Management, 301, 118045. https://doi.org/10.1016/j.enconman.2024.118045
Qin, Z., Jiang, A., Faulder, D., Cladouhos, T. T., & Jafarpour, B. (2023). Efficient optimization of energy recovery from geothermal reservoirs with recurrent neural network predictive models. Water Resources Research, 59(3), e2022WR032653. https://doi.org/10.1029/2022WR032653
Ramzan, M., Razi, U., Usman, M., Sarwar, S., Talan, A., & Mundi, H. S. (2024). Role of nuclear energy, geothermal energy, agriculture, and urbanization in environmental stewardship. Gondwana Research, 125, 150–167. https://doi.org/10.1016/j.gr.2023.11.012
Richardson, I., & Webbison, S. (2024). Greenhouse gas emissions reduction: Global geothermal power plant catalog. GRC Transactions, 48, 123–145.
Rohit, R. V., Kiplangat, D. C., Veena, R., Jose, R., Pradeepkumar, A. P., & Kumar, K. S. (2023). Tracing the evolution and charting the future of geothermal energy research and development. Renewable and Sustainable Energy Reviews, 184, 113531. https://doi.org/10.1016/j.rser.2023.113531
Sadeghi, S. (2022). Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges. Energy Storage Materials, 45, 123–145. https://doi.org/10.1016/j.ensm.2021.12.012
Santos, L., Taleghani, A. D., & Elsworth, D. (2022). Repurposing abandoned wells for geothermal energy: Current status and future prospects. Renewable Energy, 185, 1234–1245. https://doi.org/10.1016/j.renene.2021.12.123
Sbrana, A., Lenzi, A., Paci, M., Gambini, R., Sbrana, M., Ciani, V., ... Marianelli, P. (2021). Analysis of natural and power plant CO₂ emissions in the Mount Amiata (Italy) volcanic–geothermal area reveals sustainable electricity production at zero emissions. Energies, 14(15), 4692. https://doi.org/10.3390/en14154692
Sharmin, T., Khan, N. R., Akram, M. S., & Ehsan, M. M. (2023). A state-of-the-art review on geothermal energy extraction, utilization, and improvement strategies: Conventional, hybridized, and enhanced geothermal systems. International Journal of Thermofluids, 18, 100323. https://doi.org/10.1016/j.ijft.2023.100323
Shelare, S., Kumar, R., Gajbhiye, T., & Kanchan, S. (2023). Role of geothermal energy in sustainable water desalination—A review on current status, parameters, and challenges. Energies, 16(5), 2345. https://doi.org/10.3390/en16052345
Singh, V. P., Kumar, A., & Awasthi, M. K. (2025). Augmentation of solar, geothermal, and earth-air heat exchanger in sustainable buildings. In Heat Transfer Enhancement Techniques: Thermal Performance, Optimization and Applications (pp. 119–158). Elsevier. https://doi.org/10.1016/B978-0-12-823456-7.00005-2
Somova, E. V., Tugov, A. N., & Tumanovskii, A. G. (2023). Modern coal-fired power units for ultra-supercritical steam conditions. Thermal Engineering, 70(5), 345–360. https://doi.org/10.1134/S0040601523050087
Szanyi, J., Rybach, L., & Abdulhaq, H. A. (2023). Geothermal energy and its potential for critical metal extraction—a review. Energies, 16(8), 3456. https://doi.org/10.3390/en16083456
Temizel, C., Yegin, C., Kim, J., Saputelli, L., & Torsæter, O. (2025). Reservoir engineering, reservoir management, and surveillance in unconventional resources. In Unconventional Resources (pp. 239–283). CRC Press. https://doi.org/10.1201/9781003347656-10
Tester, J. W., Beckers, K. F., Hawkins, A. J., & Lukawski, M. Z. (2021). The evolving role of geothermal energy for decarbonizing the United States. Energy & Environmental Science, 14(12), 6211–6241. https://doi.org/10.1039/D1EE02309H
Umar, M., Awosusi, A. A., Adegboye, O. R., & Ojekemi, O. S. (2024). Geothermal energy and carbon emissions nexus in leading geothermal-consuming nations: Evidence from nonparametric analysis. Energy & Environment, 35(5), 2726–2752. https://doi.org/10.1177/0958305X241234567
Wang, L., Huang, X., Babaei, M., Liu, Z., Yang, X., & Yan, J. (2023). Full-scale utilization of geothermal energy: A high-efficiency CO₂ hybrid cogeneration system with low-temperature waste heat. Journal of Cleaner Production, 403, 136866. https://doi.org/10.1016/j.jclepro.2023.136866
Yalcin, M., Sari, F., & Yildiz, A. (2023). Exploration of potential geothermal fields using MAXENT and AHP: A case study of the Büyük Menderes Graben. Geothermics, 108, 102654. https://doi.org/10.1016/j.geothermics.2022.102654
Yilmaz, F., Ozturk, M., & Selbaş, R. (2023). Proposed and assessment of a sustainable multigeneration plant combined with a transcritical CO₂ cycle operated by flash-binary geothermal energy. International Journal of Hydrogen Energy, 48(45), 17012–17025. https://doi.org/10.1016/j.ijhydene.2023.01.123
Zhang, J., Chen, L., Sun, Y., Xu, L., Zhao, X., Li, Q., & Zhang, D. (2024). Geothermal resource distribution and prospects for development and utilization in China. Natural Gas Industry B, 11(1), 6–18. https://doi.org/10.1016/j.ngib.2023.12.001
Zhuang, L., & Zang, A. (2021). Laboratory hydraulic fracturing experiments on crystalline rock for geothermal purposes. Earth-Science Reviews, 220, 103735. https://doi.org/10.1016/j.earscirev.2021.103735
DOI: http://dx.doi.org/10.52155/ijpsat.v50.1.7155
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ekeinde Evelyn Bose, Diepiriye Chenaboso Okujagu

This work is licensed under a Creative Commons Attribution 4.0 International License.