Utilization of Remote Sensing Technology in Flood Risk Mapping: A Quantitative Approach for National Stability
Abstract
This study evaluates the role of flood early warning systems in supporting national stability and enhancing national defense through the use of weather radar and Geographic Information Systems (GIS) technology. The study focuses on the DKI Jakarta area which has a high risk of flooding. Rainfall data, weather radar, and spatial analysis are used to identify potential flooding and support rapid and accurate decision making. The results of the study indicate that the implementation of technology-based early warning systems significantly increases the effectiveness of disaster mitigation and minimizes its impact on communities and national vital infrastructure. This study emphasizes the importance of integrating advanced technology into disaster risk management strategies to strengthen national resilience.
Keywords
Full Text:
PDFReferences
Alawiyah, AM, & Harintaka, H. (2021). Identification of Flood Inundation in DKI Jakarta Area Using Sentinel-1 Satellite Imagery. JGISE: Journal of Geospatial Information Science and Engineering, 4(2), 95. https://doi.org/10.22146/jgise.68353
Anafi, NFM, Noor, NM, & Widyasamratri, H. (2023). A Systematic Review of Real-time Urban Flood Forecasting Model in Malaysia and Indonesia -Current Modelling and Challenge. Jurnal Planologi, 20(2), 150. https://doi.org/10.30659/jpsa.v20i2.30765
Arcgis, D. (2011). Processing SRTM DEM Data. May.
Azis, IS, Sugandi, D., & Setiawan, I. (2021). Learning of disaster mitigation through problem based learning method in senior high school. IOP Conference Series: Earth and Environmental Science, 683(1). https://doi.org/10.1088/1755-1315/683/1/012053
Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J.M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
Buslima, FS, Omar, RC, Jamaluddin, TA, & Taha, H. (2018). Flood and flash flood geo-hazards in Malaysia. International Journal of Engineering and Technology(UAE), 7(4). https://doi.org/10.14419/ijet.v7i4.35.23103
Cai, Y., Li, L., Elahi, E., & Qiu, Y. (2018). Selection of policies on typhoon and rainstorm disasters in China: A content analysis perspective. Sustainability (Switzerland), 10(2), 1–13. https://doi.org/10.3390/su10020387
Cea, L., & Costabile, P. (2022). Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change: A Review. In Hydrology (Vol. 9, Issue 3). https://doi.org/10.3390/hydrology9030050
Chan, SW, Abid, SK, Sulaiman, N., Nazir, U., & Azam, K. (2022). A systematic review of the flood vulnerability using geographic information system. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09075
De Almeida, LG, De Souza, AD, Kuehne, BT, & Gomes, OSM (2020). Data analysis techniques in vehicle communication networks: Systematic mapping of literature. IEEE Access, 8, 199503–199512. https://doi.org/10.1109/ACCESS.2020.3034588
Ding, L., Ma, L., Li, L., Liu, C., Li, N., Yang, Z., Yao, Y., & Lu, H. (2021). A survey of remote sensing and geographic information system applications for flash floods. Remote Sensing, 13(9), 1–20. https://doi.org/10.3390/rs13091818
Djuyandi, Y., Casnoto, H., & Hidayat, W. (2019). Military operations other than war (Mootw): Synergy of Indonesian national armed forces (TNI) and national disaster management agency (BNPB) in disaster management. Humanities and Social Sciences Reviews, 7(4), 111–121. https://doi.org/10.18510/hssr.2019.7416
Eko Nuryanto, D. (2013). 20th CENTURY RAINFALL CHARACTERISTIC IN JAKARTA BASED ON GLOBAL CLIMATE EVENTS. Manuscript Submitted: May 31, 11.
Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106(1). https://doi.org/10.1007/s11069-020-04480-0
Firdaus, D., Andriani, I., & Sidik, RP (2023). Visualization of Disaster-Prone Location Data in West Java Using Google Data Studio. Intech Scientific Journal: Information Technology Journal of UMUS, 5(1), 69–77. https://doi.org/10.46772/intech.v5i1.994
Goodchild, M. F. (2009). Geographic information systems and science: Today and tomorrow. Annals of GIS, 15(1), 3–9. https://doi.org/10.1080/19475680903250715
Hall, J. W., Dawson, R. J., Sayers, P. B., Rosu, C., Chatterton, J. B., & Deakin, R. (2003). A methodology for national-scale flood risk assessment. Proceedings of the Institution of Civil Engineers: Water and Maritime Engineering, 156(3), 235–247. https://doi.org/10.1680/wame.2003.156.3.235
Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12(21). https://doi.org/10.1007/s12517-019-4754-9
Hang, HT, Hoa, PD, Tru, VN, & Phuong, NV (2021). Application of Shannon'S Entropy Model and Gis in Flash Flood Forecasting Along National Highway-6, Hoa Binh Province, Vietnam. International Journal of GEOMATE, 21(87), 50–57. https://doi.org/10.21660/2021.87.j2316
Jamroni.pdf. (nd).
Jauh, P., & Diponegoro, U. (nd). Rainfall Data Processing Lecture-Drainage-Presentation.
Jiang, W., Ji, X., Li, Y., Luo, X., Yang, L., Ming, W., Liu, C., Yan, S., Yang, C., & Sun, C. (2023). Modified flood potential index (MFPI) for flood monitoring in terrestrial water storage depletion basins using GRACE estimates. Journal of Hydrology, 616(October 2022), 128765. https://doi.org/10.1016/j.jhydrol.2022.128765
Kay, A.L., Rudd, A.C., Fry, M., Nash, G., & Allen, S. (2021). Climate change impacts on peak river flows: Combining national-scale hydrological modeling and probabilistic projections. Climate Risk Management, 31(September 2020), 1–15. https://doi.org/10.1016/j.crm.2020.100263
Ministry of Health of the Republic of Indonesia. (2011). No.主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 16(2), 39–55.
Kurowksa, K., Marks-Bielska, R., Bielski, S., Aleknavičius, A., & Kowalczyk, C. (2021). Geographic information systems and the sustainable development of rural areas. Land, 10(1), 1–18. https://doi.org/10.3390/land10010006
Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A.X., & Chen, M. (2019). Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective. International Journal of Geographical Information Science, 33(2), 346–367. https://doi.org/10.1080/13658816.2018.1533136
Mazurek, M. (2023). Social Sciences. The Interwar World, 386–402. https://doi.org/10.4324/9781003105992-27
Menéndez, P., Losada, I.J., Torres-Ortega, S., Narayan, S., & Beck, M.W. (2020). The Global Flood Protection Benefits of Mangroves. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-61136-6
Mohd Yassin, NA, Aizam Adnan, N., & S Md Sadek, ES (2023). PLANNING MALAYSIA: ANALYSIS OF FLASH FLOOD POTENTIAL INDEX (FFPI) AND SCENARIOS ASSESSMENT IN SHAH ALAM USING GIS APPROACH Analysis of Flash Flood Potential Index (FFPI) and Scenarios Assessment in Shah Alam Using GIS Approach. Journal of the Malaysian Institute of Planners VOLUME, 21(2), 1–12. https://browser.creodias.eu.
Munawar, HS, Hammad, AWA, & Waller, ST (2022). Remote Sensing Methods for Flood Prediction: A Review. Censorship, 22(3). https://doi.org/10.3390/s22030960
Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2020). A review of the current status of flood modeling for urban flood risk management in the developing countries. In Scientific Africa (Vol. 7). https://doi.org/10.1016/j.sciaf.2020.e00269
Nugro, P. (2014). 7 Causes of Flooding In City Areas Which Are Very Densely Populated. Jay, 7(2), 205.
Education, J., Dan, L., & Sustainability, P. (2021). Article info ABSTRACT Received: 27. 22, 50–60.
Permana, DS, Hutapea, TDF, Praja, AS, Fatkhuroyan, & Muzayanah, LF (2016). Multi Weather Radar Format Data Processing Using Python-Based Wradlib. Journal of Meteorology and Geophysics, 17(3), 157–164.
Popa, M.C., Peptenatu, D., Draghici, C.C., & Diaconu, D.C. (2019). Flood hazard mapping using the flood and Flash-Flood Potential Index in the Buzau River catchment, Romania. Water (Switzerland), 11(10). https://doi.org/10.3390/w11102116
Practices, G., & Learned, L. (2008). Private Sector Activities in Disaster Risk Reduction. Sampath, 1, 97.
Prakasa, A., & Utami, FD (2019). Integrated Weather Radar Information System of BMKG BMKG The Integrated Weather Radar Information System of BMKG. Journal of Telecommunication, Electronics, and Control Engineering (Jtece), 01, 86–96.
Romali, NS, & Yusop, Z. (2021). Flood damage and risk assessment for urban areas in Malaysia. Hydrology Research, 52(1). https://doi.org/10.2166/NH.2020.121
Taryana, A., El Mahmudi, MR, & Bekti, H. (2022). Analysis of Flood Disaster Preparedness in Jakarta. JANE - Journal of Public Administration, 13(2), 302. https://doi.org/10.24198/jane.v13i2.37997
Turner, L. W., Udal, M. C., Larson, B. T., & Shearer, S. A. (2000). Monitoring cattle behavior and pasture use with GPS and GIS. Canadian Journal of Animal Science, 80(3), 405–413. https://doi.org/10.4141/A99-093
Vojtek, M., Janizadeh, S., & Vojteková, J. (2022). Riverine flood potential assessment at municipal level in Slovakia. Journal of Hydrology: Regional Studies, 42(July). https://doi.org/10.1016/j.ejrh.2022.101170
Vojtek, M., Janizadeh, S., & Vojteková, J. (2023). Riverine flood potential assessment using metaheuristic hybrid machine learning algorithms. Journal of Flood Risk Management, 16(3), 1–17. https://doi.org/10.1111/jfr3.12905
Wallwey, C., & Kajfez, R.L. (2023). Quantitative research artifacts as qualitative data collection techniques in a mixed methods research study. Methods in Psychology, 8(February), 100115. https://doi.org/10.1016/j.metip.2023.100115
Wang, L., Cui, S., Li, Y., Huang, H., Manandhar, B., Nitivattananon, V., Fang, X., & Huang, W. (2022). A review of the flood management: from flood control to flood resilience. In Heliyon (Vol. 8, Issue 11). https://doi.org/10.1016/j.heliyon.2022.e11763
Wei, X., Guo, H., Wang, X., Wang, X., & Qiu, M. (2022). Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey. IEEE Communications Surveys and Tutorials, 24(1), 404–431. https://doi.org/10.1109/COMST.2021.3134955
White, M. G. (2020). Why human subjects research protection is important. Ochsner Journal, 20(1), 16–33. https://doi.org/10.31486/toj.20.5012
Wu, CH, Lee, SY, Chiang, JCH, & Tsai, P.C. (2023). Role of precession on the transition seasons of the Asian monsoon. Npj Climate and Atmospheric Science, 6(1), 1–9. https://doi.org/10.1038/s41612-023-00426-y
Yin, Q., Ntim-Amo, G., Ran, R., Xu, D., Ansah, S., Hu, J., & Tang, H. (2021). Flood disaster risk perception and urban households' flood disaster preparedness: The case of Accra metropolis in Ghana. Water (Switzerland), 13(17). https://doi.org/10.3390/w13172328
Yu, Q., Wang, Y., & Li, N. (2022). Extreme Flood Disasters: Comprehensive Impact and Assessment. Water (Switzerland), 14(8), 1–14. https://doi.org/10.3390/w14081211
Yuan, Z., Ton That, D.H., Kothari, S., Fils, G., & Malik, T. (2018). Utilizing provenance in reusable research objects. Informatics, 5(1), 1–25. https://doi.org/10.3390/informatics5010014
DOI: http://dx.doi.org/10.52155/ijpsat.v49.1.7022
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rika Kariani Adiyasa

This work is licensed under a Creative Commons Attribution 4.0 International License.