Effectiveness of Direct and Indirect Sunlight Irradiation in the Cultivation of Chlorella pyrenoidosa
Abstract
This study discusses the effectiveness of direct and indirect sunlight exposure in the cultivation of Chlorella pyrenoidosa. This microalga plays a role in various aspects of human life, both as a food source, an alternative energy source, and a pharmaceutical ingredient. Additionally, its relatively high protein content serves as food for aquatic microorganisms. Direct sunlight exposure can increase the density and growth rate of C. pyrenoidosa. This study employs an experimental approach using an independent t-test design, incorporating two treatments and six replications: Treatment A, which involves direct sunlight exposure, and Treatment B, which involves indirect sunlight exposure. The research results show that direct and indirect sunlight exposure significantly affects the growth rate of the C. pyrenoidosa population (P < 0.05). Direct sunlight exposure (Treatment A) yielded the best results with a density of 1838.94±116.27 ind/mL and a growth rate of 18.02±1.35 ind/mL/day.
Keywords
Full Text:
PDFReferences
. Chen Y.X., Liu X.Y., Xiao Z., Huang Y.F., Liu B., 2022. Could C. pyrenoidosa be exploited as an alternative nutrition source in aquaculture feed? A study on the nutritional values and anti-nutritional factors" Frontiers in nutrition (2022) doi:10.3389/fnut.2022.1069760
. Saha and Murray (2018). Exploitation of Microalgae Species for Nutraceutical Purposes: Cultivation Aspects Fermentation (2018) doi:10.3390/fermentation4020046.
. Hamed, I. (2016). The evolution and versatility of microalgal biotechnology: a review. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1104-1123. https://doi.org/10.1111/1541-4337.12227
. Shiels, K., Lordan, R., Nasopoulou, C., Zabetakis, I., Murray. (2021). Bioactive lipids of marine microalga chlorococcum sp. sabc 012504 with anti-inflammatory and anti-thrombotic activities. Marine Drugs, 19(1), 28. https://doi.org/10.3390/md19010028/md19010028.
. Lucáková, S., Brányiková, I., & Hayes, M. (2022). Microalgal proteins and bioactives for food, feed, and other applications. Applied Sciences, 12(9), 4402. https://doi.org/10.3390/app12094402
. Pulz, O. and Gros, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648. https://doi.org/10.1007/s00253-004-1647
. Nethravathy, M., Mehar, J., Mudliar, S., & Shekh, A. (2019). Recent advances in microalgal bioactives for food, feed, and healthcare products: commercial potential, market space, and sustainability. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1882-1897. https://doi.org/10.1111/1541-4337.12500
. Conde, T., Neves, B., Couto, D., Melo, T., Costa, M., Silva. (2021). Microalgae as sustainable bio-factories of healthy lipids: evaluating fatty acid content and antioxidant activity. Marine Drugs, 19(7), 357. https://doi.org/10.3390/md19070357
. Remize, M., Brunel, Y., Silva, J., Berthon, J., & Filaire, E. (2021). Microalgae n-3 pufas production and use in food and feed industries. Marine Drugs, 19(2), 113. https://doi.org/10.3390/md19020113
. Marjakangas, J., Chen, C., Lakaniemi, A., Puhakka, J., Whang, L., & Chang, J. (2015). Simultaneous nutrient removal and lipid production with chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater. Biochemical Engineering Journal, 103, 177-184. https://doi.org/10.1016/j.bej.2015.07.011
. Yadavalli, R., Rao, C., Rao, R., & Potumarthi, R. (2014). Dairy effluent treatment and lipids production by C. pyrenoidosa and euglena gracilis: study on open and closed systems. Asia-Pacific Journal of Chemical Engineering, 9(3), 368-373. https://doi.org/10.1002/apj.1805
. Uchiyama-Tanaka, 2023. Folate metabolism of C. pyrenoidosa on subjects of MTHFR C677T polymorphism Personalized medicine universe (2023) doi:10.46459/pmu.2022010
. Meng, S. (2023). The gill-associated bacterial community is more affected by exogenous C. pyrenoidosa addition than the bacterial communities of water and fish gut in gift tilapia (Oreochromis niloticus) aquaculture system. Biology, 12(9), 1209. https://doi.org/10.3390/biology12091209
. Chu, B., Zhao, J., Zheng, H., Gong, J., Chen, K., Zhang. (2021). Performance of led with mixed wavelengths or two-phase culture on the growth and lipid accumulation of C. pyrenoidosa. International Journal of Agricultural and Biological Engineering, 14(1), 90-96. https://doi.org/10.25165/ j.ijabe.20211401.6098
. Ma, D., Li, Y., & Fu, H. (2019). Effect of high temperature on the balance between photosynthetic light absorption and energy utilization in C. pyrenoidosa (chlorophyceae). Journal of Oceanology and Limnology, 38(1), 186-194. https://doi.org/10.1007/s00343-019-8369-5
. Zhang, Z. and Cui, J. (2014). The effects of stress on the growth and physiological characteristics of C. pyrenoidosa. Advanced Materials Research, 1073-1076, 147-153. https://doi.org/10.4028/ www.scientific.net/amr.1073-1076.147
. Sun, H., Ren, Y., Mao, X., Li, X., Zhang, H., Lao. (2020). Harnessing balance of chromochloris zofingiensis to overcome the potential conflict in microalgal production. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-0900
. Zhang, W., Sun, W., An, S., Xiong, B., Lin, K., Cui, X., & Guo, M. (2013). Acute and chronic toxic effects of chloramphenicol on scenedesmus obliquus and C. pyrenoidosa. Water Environment Research, 85(8), 725-732. https://doi.org/10.2175/106143013x13596524515780
. Padang A., Lestaluhu A., Siding R., 2018. The growth of phytoplankton Dunaliella sp. with different photoperiod at laboratorium scale. Jurnal Agribisnis Perikanan 11(1):1-7.
. Zenneveld, N,. E. A. Huisman and J. H. Boon. 1991. Principles of fish farming. PT Gramedia Pustaka Umum, Jakarta.
. Sudarti. Diana Putri, F. S. 2022. Analysis of Light Intensity in the Room Using the Android-Based Smart Luxmeter Application. Journal of Physics Materials and Learning. 12(2): 51-55
. Izzati, N. (2017). Stability analysis and optimal control on the dynamic model of light energy modulation in algae photosynthesis. Reaktom Engineering and Optimisation, 2(1). https://doi.org/10.33752/reaktom.v2i1.152
. Hao-Cheng Yu, Chyi-How Lay, Peer Mohamed Abdul, and Jane-Yii Wu. (2023). Enhancing Lipid Production of Chlorella sp. by Mixotrophic Cultivation Optimization" Processes (2023) doi:10.3390/pr11071892.
. Xu, Y.; Ibrahim, I.M.; Harvey, P.J. (2016) The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiol. Biochem. 2016, 106, 305–315.
. Chen Y.X., Liu X.Y., Xiao Z., Huang Y.F., Liu B. (2016). Antioxidant activities of polysaccharides obtained from C. pyrenoidosa via different ethanol concentrations. Int. J. Biol. Macromol.;91:505–509.
. Mufidah, A., Agustono, Sudarno, and D. D. Nindarwi. (2017). Laboratory and Intermediate Scale Chlorella sp. Culture Technique at the Centre for Brackish Water Aquaculture (BPBAP) Situbondo, East Java. Journal of Aquaculture and Fish Health, 7(2): 50-56.
. Monika Prakash Rai, Subhasha Nigam, Rupali Sharma. (2013). Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass and Bioenergy. Volume 58, November 2013, Pages 251-257.
. Weiguo Zhang, Peiliang Zhang, Hao Sun, Maozhen Chen, Shan Lu, Pengfu Li (2014). Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresource Technology. Volume 173, December 2014, Pages 52-58.
. Jianke Huang, Jianhua Fan, Yuanguang Li, Feifei Han, Jun Wang, Xinwu Li, Weiliang Wang, and Shulan Li. (2012) Sequential heterotrophy–dilution–photoinduction cultivation for efficient mi croalgal biomass and lipid production. Bioresource Technology, 112:206–211, May 2012. ISSN 0960-8524.
. Aprilliyanti, S., Soeprobowati, T., & Yulianto, B. (2016). The relationship between chlorella sp abundance and aquatic environmental quality at semi-mass scale in bbbpbap jepara. Journal of Environmental Science, 14(2), 77. https://doi.org/10.14710/jil.14.2.77-81
. Huang, G. and Wang, Y. (2003). Nitrate and phosphate removal by co-immobilized chlorella pyrenoidosa and activated sludge at different ph values. Water Quality Research Journal, 38(3), 541-551. https://doi.org/10.2166/wqrj.2003.035
. Xue, J., Wang, L., Zhang, L., Balamurugan, S., Li, D. (2016). The pivotal role of malic enzyme in enhancing oil accumulation in green microalga chlorella pyrenoidosa. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0519-2
. Delilla, S., Syafriadiman, S., & Hasibuan, S. (2022). The effect of addition boster manstap to density cell of chlorella sp. Jurnal Perikanan Dan Kelautan, 27(2), 219. https://doi.org/10.31258/jpk.27.2.219-226
. Aznan, M., Yasin, N., Mohd, N., & Takriff, M. (2022). Assessment of mathematical models for the growth of microalgae characium sp. ukm1, chlorella sp. ukm2 and coelastrella sp. ukm4 in synthetic infiltration soluble water. Malaysian Applied Biology, 51(5), 249-260. https://doi.org/10.55230/mabjournal.v51i5.2342
. Rosyadi, R. (2023). Utilisation of fermented leachate with different concentrations on the growth and cell density of chlorella sp.. Aquaculture Media, 18(2), 47. https://doi.org/10.15578/ma.18.2.2023.47-53
. Tian, S., Wang, F., Luo, M., Feng, Y., Du, K. (2022). Effect of chlorella pyrenoidosa powder on rheological properties and fermentation characteristics of dough. Journal of Food Processing and Preservation, 46(4). https://doi.org/10.1111/jfpp.16446
. Megawati, M., Damayanti, A., Putri, R., Pradnya, I., Yahya, H., & Arnan, N. (2020). Drying characteristics of <i>chlorella pyrenoidosa</i> using oven and its evaluation for bioethanol production. Materials Science Forum, 1007, 1-5. https://doi.org/10.4028/www.scientific.net/msf.1007.1
. Zhang, W., Li, J., Zhang, Z., Fan, G., Ai, Y., Gao. (2019). Comprehensive evaluation of a cost-effective method of culturing chlorella pyrenoidosa with unsterilized piggery wastewater for biofuel production. Biotechnology for Biofuels, 12(1). https://doi.org/10.1186/s13068-019-1407
. Rini, D., Hasan, H., & Prasetio, E. (2018). Aquaponic system with different plant species on the growth of tengadak fish fry (barbonymus scwanenfeldii). Ruaya Journal of Research and Studies in Fisheries and Marine Sciences, 6(02). https://doi.org/10.29406/rya.v6i02.1007
. Lakshitarsari, K., Romadhoni, M., & Suryanti, V. (2022). Development of verticulture vegetable cultivation and budikdamber aquaponics (fish farming in buckets) as a solution for agricultural businesses on limited land. Semar (Journal of Science Technology and Arts for Society), 11(2), 139. https://doi.org/10.20961/semar.v11i2.51437
DOI: http://dx.doi.org/10.52155/ijpsat.v48.1.6799
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Hendra Kusuma
This work is licensed under a Creative Commons Attribution 4.0 International License.