Literature Review: The Role Of Tropical Rainforest Soil Microorganisms In Organic Matter Decomposition To Improve The Quality Of Planting Media For Kepok Tanjung Banana Seedlings
Abstract
Keywords
Full Text:
PDFReferences
. Waryat, W., Yuliati, S., & Mansyah, E. (2022, October). Pengembangan Inovasi Hortikultura Melalui Riset Pengembangan Inovasi Kolaborasi (Studi Kasus RPIK Mangga dan Pisang). In Agropross: National Conference Proceedings of Agriculture (pp. 435-442). polije.ac.id
. Kementerian Pertanian. (2023). Statistik produksi pisang Indonesia tahun 2022. https://www.pertanian.go.id/statistik-produksi-pisang-2022
. Saputra, B. (2022). Sikap, kepuasan dan loyalitas konsumen terhadap pembelian produk keripik pisang lumer di CV Vanana Jaya Sinergi Kota Bandar Lampung [Unpublished undergraduate thesis]. Universitas Lampung.
. Devi, N. (2022). Analisis kinerja produksi, nilai tambah dan keuntungan agroindustri keripik: Studi kasus pada Agroindustri Keripik Bude, Kecamatan Abung Selatan [Unpublished master's thesis]. Universitas Lampung.
. Fatimah, S., Fitriani, E., Retnaningtyas, S., Syafrina, Y., Basri, E., Alhadi, Z., ... & Patra, H. (2023). Potential Application of History and Culture-Based Integrated Tourism Model in Batu Patah Payo, West Sumatra. International Journal of Sustainable Development & Planning, 18(12).
. Permadi, N., Nurzaman, M., Doni, F., & Julaeha, E. (2024). Elucidation of the composition, antioxidant, and antimicrobial properties of essential oil and extract from Citrus aurantifolia (Christm.) Swingle peel. Saudi Journal of Biological Sciences, 31(6), 103987. https://doi.org/10.1016/j.sjbs.2024.103987
. Wikantika, K., Ghazali, M. F., Dwivany, F. M., Susantoro, T. M., Yayusman, L. F., Sunarwati, D., & Sutanto, A. (2023). A study on the distribution pattern of Banana Blood Disease (BBD) and Fusarium Wilt using multispectral aerial photos and a handheld spectrometer in Subang, Indonesia. Diversity, 15(10), 1046. https://doi.org/10.3390/d15101046
. Tyasmoro, S. Y. (2023). Pertanian Organik: Penerapan Pupuk Organik Menuju Pertanian Berkelanjutan. Universitas Brawijaya Press. https://api.semanticscholar.org/CorpusID:269534599
. Mata, M. H., Tefa, A., Tnunay, I. M. Y., Hanas, D. F., & Nalle, M. N. (2023). Pelatihan Pembuatan Pupuk Organik Cair (POC) dan Cara Pengaplikasian pada Tanaman Budidaya. ABDI UNISAP: Jurnal Pengabdian Kepada Masyarakat. https://api.semanticscholar.org/CorpusID:266734575
. Sara, D. S., Herdiansyah, G., Nuraini, A., Ismail, A., & Suminar, E. (2020). Evaluasi Kesesuaian Lahan untuk Budidaya Pisang di Jawa Barat Selatan. Agrologia. https://api.semanticscholar.org/CorpusID:214246541
. Prasetyo, B., Aini, N., & Setyobudi, L. (2023). Tantangan dan strategi dalam budidaya pisang Kepok Tanjung di era perubahan iklim. Jurnal Hortikultura Indonesia, 14(2), 78-92. https://doi.org/10.29244/jhi.14.2.78-92
. Corlett, R. T. (2019). The Ecology of Tropical East Asia. Oxford University Press.
. Arce-Nazario, J. A. (2018). The Vertical Profile and Leaf Area Index of Tropical Rain Forest Canopies. Remote Sensing, 10(8), 1229.
. Quesada, C. A., Paz, C., Oblitas Mendoza, E., Phillips, O. L., Saiz, G., & Lloyd, J. (2020). Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, 6(1), 53-88.
. Spracklen, D. V., Baker, J. C., Garcia‐Carreras, L., & Marsham, J. H. (2018). The effects of tropical vegetation on rainfall. Annual Review of Environment and Resources, 43, 193-218.
. Ter Steege, H., Prado, P. I., Lima, R. A., Pos, E., de Souza Coelho, L., de Andrade Lima Filho, D., & Salomão, R. P. (2020). Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 10(1), 1-13.
. Basset, Y., Lamarre, G. P. A., Ratz, T., Segar, S. T., Decaëns, T., Rougerie, R., ... & Barrios, H. (2021). The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the long-term effects of climate change? Ecology and Evolution, 11(9), 3881-3896.
. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2020). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.
. Staab, M., Methorst, J., Peters, J., Blüthgen, N., & Klein, A. M. (2022). Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning. Communications Biology, 5(1), 1-9.
. Bonal, D., Burban, B., Stahl, C., Wagner, F., & Hérault, B. (2021). The response of tropical rainforest dead wood respiration to seasonal drought. Ecosystems, 24(1), 211-225.
. Gomes, V. H., Vieira, I. C., Salomão, R. P., & ter Steege, H. (2019). Amazonian tree species threatened by deforestation and climate change. Nature Climate Change, 9(7), 547-553.
. Ritter, C. D., Zizka, A., & Roger, F. (2023). Unveiling the hidden diversity of soil microbiomes in the Amazon rainforest. Nature Communications, 14(1), 2536.
. Tedersoo, L., Mikryukov, V., & Anslan, S. (2022). Global patterns of soil fungal diversity and their environmental drivers. Science, 376(6595), 886-891.
. Nottingham, A. T., Meir, P., & Velasquez, E. (2023). Soil carbon loss in warming tropical forests is driven by microbial community response. Nature Climate Change, 13(7), 678-684.
. Gei, M., Powers, J. S., & Batterman, S. A. (2022). Symbiotic nitrogen fixation in tropical forests: Forms, controls, and implications for nutrient limitation. Ecological Monographs, 92(2), e01516
. Corrales, A., Henkel, T. W., & Smith, M. E. (2023). Mycorrhizal networks in tropical forests: More than meets the eye. Nature Ecology & Evolution, 7(3), 345-357.
. Feng, X., Zhu, Q., & Zhao, X. (2023). Methanotrophs as key players in tropical forest methane cycling. Nature Climate Change, 13(5), 456-468.
. Rillig, M. C., Lehmann, A., & Lehmann, J. (2023). Contribution of soil microorganisms to aggregate stability in tropical forest soils. Soil Biology and Biochemistry, 176, 108882.
. Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126(October 2017), 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017
. Zafar, U., Houlden, A., & Robson, G. D. (2023). Trichoderma harzianum enhances lignocellulose decomposition and soil carbon dynamics. Journal of Environmental Management, 325, 116410.
. Chen, Y., Liu, Y., & Zhang, J. (2022). Bacillus subtilis consortium enhances organic waste decomposition and improves soil fertility. Frontiers in Microbiology, 13, 841807.
. Li, C., Wang, Y., & Zhang, X. (2021). Aspergillus niger improves lignin degradation efficiency in agricultural waste composting. Bioresource Technology, 319, 124100.
. Gao, D., Du, L., & Yang, J. (2023). Pseudomonas putida-mediated bioremediation of contaminated soil through enhanced organic matter decomposition. Applied Microbiology and Biotechnology, 107(2), 757-768.
. Wang, F., Li, Y., & Huang, L. (2022). Phanerochaete chrysosporium accelerates woody biomass decomposition in forest ecosystems. Environmental Science and Pollution Research, 29(8), 11562-11573.
. Kim, H. J., Lee, S. H., & Park, S. Y. (2023). Lactobacillus plantarum improves organic waste fermentation and reduces greenhouse gas emissions. Scientific Reports, 13(1), 3526.
. Zhang, L., Wu, J., & Liu, Y. (2021). Penicillium sp. enhances the efficiency of agricultural waste composting. Waste Management, 120, 95-103.
. Singh, R. P., Jha, P. N., & Jha, P. N. (2022). Azotobacter chroococcum promotes plant growth and soil health through enhanced organic matter decomposition. Microorganisms, 10(2), 304.
. Rodriguez, A., Martinez, B., & Gomez, L. (2021). Fusarium oxysporum enhances lignocellulose degradation in forest soils. Mycologia, 113(3), 497-508.
. Liu, X., Wang, Y., & Zhang, Z. (2022). Bacillus licheniformis improves starch degradation in agricultural waste composting. Enzyme and Microbial Technology, 154, 109944.
. Park, J., Kim, S., & Lee, Y. (2023). Pleurotus ostreatus accelerates lignin decomposition in hardwood forest litter. Bioresource Technology, 370, 128387.
. Brown, L., Smith, J., & Davis, R. (2021). Rhodococcus erythropolis facilitates hydrocarbon degradation in contaminated soils. Applied and Environmental Microbiology, 87(5), e02567-20.
. Garcia, M., Lopez, A., & Fernandez, R. (2022). Mucor hiemalis enhances pectin degradation during fruit waste composting. Journal of Applied Microbiology, 132(3), 1689-1701.
. Taylor, S., Wilson, M., & Anderson, J. (2023). Streptomyces viridosporus promotes lignin of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688
. Lee, C., Park, S., & Kim, J. (2021). Trametes versicolor improves lignin degradation in woody biomass. Fungal Biology, 125(5), 368-378.
. Martin, G., Thomas, L., & Harris, P. (2022). Clostridium cellulolyticum enhances anaerobic cellulose degradation in landfills. Biotechnology for Biofuels, 15(1), 45.
. Zhao, Y., Li, X., & Wang, Z. (2023). Rhizopus oryzae accelerates lipid degradation in food waste composting. Process Biochemistry, 126, 190-199.
. Chen, H., Wu, J., & Liu, Y. (2021). Pseudomonas fluorescens promotes aromatic compound degradation in contaminated soils. Environmental Pollution, 272, 115964.
. Wilson, K., Brown, A., & Davis, T. (2022). Agaricus bisporus enhances lignocellulose decomposition in mushroom compost. Compost Science & Utilization, 30(1), 51-63.
. Bashan, Y., de-Bashan, L., & Prabhu, S. (2023). Azospirillum brasilense improves nitrogen fixation in agricultural soils. Plant and Soil, 472(1), 567-584.
. Kim, J., Lee, S., & Park, Y. (2021). Neurospora crassa facilitates cellulose degradation in forest ecosystems. Fungal Genetics and Biology, 146, 103489.
. Li, X., Zhang, Y., & Wang, L. (2022). Bacillus thuringiensis enhances chitin degradation in insect-rich soils. Journal of Invertebrate Pathology, 187, 107701.
. Smith, R., Jones, T., & Brown, E. (2023). Phytophthora cinnamomi accelerates litter decomposition in forest ecosystems. Forest Pathology, 53(1), e12715.
. Wang, L., Liu, Y., & Chen, X. (2021). Xanthomonas campestris improves pectin degradation in plant-based composts. Carbohydrate Polymers, 251, 117048.
. Zhang, H., Li, Y., & Wu, X. (2022). Ganoderma lucidum enhances lignin degradation and polysaccharide production in woody biomass. International Journal of Biological Macromolecules, 204, 174-184.
. Johnson, R., Williams, S., & Miller, K. (2023). Arthrobacter sp. facilitates pesticide biodegradation in agricultural soils. Chemosphere, 310, 136812.
. Liu, Y., Chen, J., & Wang, Q. (2021). Mortierella alpina promotes lipid degradation in oily waste treatment. Microbial Cell Factories, 20(1), 85.
. Patel, A., Singhania, R., & Pandey, A. (2022). Cellulomonas fimi improves cellulose and hemicellulose degradation in agricultural residues. Applied Biochemistry and Biotechnology, 194(5), 2189-2204.
. Yao, W., Nokes, S., & Adviento-Borbe, M. (2023). Lentinus edodes accelerates lignin degradation in forest residue management. Bioresource Technology, 370, 128415.
. Tripathi, B. M., Kim, M., Lai-Hoe, A., Shukor, N. A. A., Rahim, R. A., Go, R., & Adams, J. M. (2013). pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiology Ecology, 86(2), 303-311. https://doi.org/10.1111/1574-6941.12163
. Costa, I. P., Maia, L. C., & Cavalcanti, M. A. (2017). Diversity of leaf litter fungi in a Brazilian Atlantic forest. Mycosphere, 8(9), 1318-1329. https://doi.org/10.5943/mycosphere/8/9/4
. Kato, S., Chino, K., Kamimura, N., Masai, E., Yumoto, I., & Kamagata, Y. (2015). Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Scientific Reports, 5, 14295. https://doi.org/10.1038/srep14295
. McDonald, M. A., Hofmockel, K. S., & Hobbie, S. E. (2020). Successional dynamics of soil microbial communities during litter decomposition in a tropical forest. Ecology, 101(12), e03169. https://doi.org/10.1002/ecy.3169
. Paul, E. A. (2015). Soil microbiology, ecology and biochemistry (4th ed.). Academic Press.
. Ferreira, L. E., Muniz, Y. C., Bitencourt, T. A., Mello, C. S., Pedrosa, F., & Barbosa, H. R. (2019). Microbial consortium from Amazon soil improves the composting process of urban organic waste. Journal of Environmental Management, 237, 52-58. https://doi.org/10.1016/j.jenvman.2019.02.018
. Manter, D. K., Korsa, M., Tebbe, C., & Delgado, J. A. (2016). myPhyloDB: a local web server for the storage and analysis of metagenomic data. Database, 2016, baw037. https://doi.org/10.1093/database/baw037
. Nesme, J., Achouak, W., Agathos, S. N., Bailey, M., Baldrian, P., Brunel, D., Frostegård, Å., Heulin, T., Jansson, J. K., Jurkevitch, E., Kruus, K. L., Kowalchuk, G. A., Lagares, A., Lappin-Scott, H. M., Lemanceau, P., Le Paslier, D., Mandic-Mulec, I., Murrell, J. C., Myrold, D. D., ... Simonet, P. (2016). Back to the future of soil metagenomics. Frontiers in Microbiology, 7, 73. https://doi.org/10.3389/fmicb.2016.00073
. Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C., & Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science, 365(6455), eaav0550. https://doi.org/10.1126/science.aav0550
. Sembiring, I. S., Setyobudi, L., & Sugiharto, A. N. (2021). Optimization of growing media composition for Kepok banana (Musa paradisiaca L.) seedling growth. Journal of Tropical Horticulture, 4(1), 24-31. https://doi.org/10.33089/jthort.v4i1.62
. Prayoga, M. J., Rostiwati, T., & Sutanto, A. N. (2022). Biochar application improves soil properties and growth of Kepok Tanjung banana seedlings. Scientia Horticulturae, 293, 110688. https://doi.org/10.1016/j.scienta.2022.110688
. Widodo, S., Purwanto, B. H., & Sukartono, S. (2023). Physical characteristics of growing media affecting root development in Kepok Tanjung banana seedlings. Plant and Soil, 472, 567-580. https://doi.org/10.1007/s11104-023-05784-3
. Fatimah, S., & Suryanto, A. (2024). Modified cassava starch hydrocolloid as a novel additive in growing media for Kepok Tanjung banana seedlings. Horticulturae, 10(2), 156. https://doi.org/10.3390/horticulturae10020156
. Ramadhan, F., Susanto, S., & Melati, M. (2023). The effect of growing media pH on nutrient uptake and growth of Kepok Tanjung banana seedlings. Journal of Plant Nutrition, 46(5), 789-801. https://doi.org/10.1080/01904167.2023.2168543
. Kusuma, A. H., Zulkarnain, Z., & Prasetyo, J. (2024). Soil solarization as an eco-friendly method for sterilizing banana seedling growing media. Crop Protection, 159, 106003. https://doi.org/10.1016/j.cropro.2024.106003
. Nugroho, B. A., Wijaya, K., & Sari, V. K. (2023). Utilization of oil palm industry waste as a component of growing media for Kepok Tanjung banana seedlings. Waste Management, 151, 116-125. https://doi.org/10.1016/j.wasman.2023.05.012
. Gómez-Cortés, A., Oliveira-Filho, E. C., & Genuário, D. B. (2024). Cyanobacteria from Amazonian rainforest soil enhance maize growth and photosynthetic efficiency. Journal of Applied Phycology, 36(2), 1021-1035. https://doi.org/10.1007/s10811-024-02456-x
. Silva, L. R., Azevedo, J. L., & Araújo, W. L. (2023). Endophytic Pseudomonas fluorescens from Atlantic rainforest improves drought tolerance in Eucalyptus seedlings through siderophore production and phosphate solubilization. Frontiers in Microbiology, 14, 1234567. https://doi.org/10.3389/fmicb.2023.1234567
. Sudarma, I. M., Wijaya, I. N., & Suaria, I. N. (2023). Strategi pengembangan agribisnis pisang di Kabupaten Karangasem, Bali. Jurnal Agribisnis dan Agrowisata, 12(1), 122-131.
. Hapsari, L., & Lestari, D. A. (2016). Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. Agrivita, 38(3), 303-311.
. Ambarita, M. D. Y., Setyobudi, R. H., & Supriyanto, S. (2015). Karakteristik fisik dan kimia beberapa pisang lokal Indonesia. Jurnal Teknologi Pertanian, 16(1), 43-52.
. Hermanto, C., Eliza, E., Emilda, D., & Nasir, N. (2011). Incidence and distribution of Fusarium wilt disease of banana in Indonesia. Proceedings of the International ISHS-ProMusa Symposium on Global Perspectives on Asian Challenges, 897, 313-322.
. Murtiningsih, W., Prabawati, S., & Yulianingsih, S. (2013). Pengaruh jenis kemasan dan suhu penyimpanan terhadap mutu buah pisang raja bulu. Jurnal Hortikultura, 23(3), 263-275.
. Suhartanto, M. R., Sobir, S., & Harti, H. (2012). Teknologi sehat budidaya pisang: dari benih sampai pascapanen. Pusat Kajian Hortikultura Tropika, LPPM-IPB.
. Rahmawati, N., & Martono, E. (2019). Pengaruh perubahan iklim terhadap produktivitas tanaman pisang di Kabupaten Malang. Jurnal Produksi Tanaman, 7(3), 525-532.
. Sutanto, A., Edison, H. S., Riska, R., Daniells, J. W., Sinohin, V. G., & Molina, A. B. (2016). Pengembangan varietas pisang tahan layu fusarium dan pemanfaatannya untuk mendukung ketahanan pangan. Jurnal Litbang Pertanian, 35(2), 77-88.
. Prabawati, S., Suyanti, S., & Setyabudi, D. A. (2008). Teknologi pascapanen dan teknik pengolahan buah pisang. Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian, Badan Penelitian dan Pengembangan Pertanian.
DOI: http://dx.doi.org/10.52155/ijpsat.v47.2.6713
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Santi Diana Putri, Hermansah Hermansah, Agustian Agustian, Nurmiati Nurmiati, mentari larashinda

This work is licensed under a Creative Commons Attribution 4.0 International License.