Literature Review: The Role Of Tropical Rainforest Soil Microorganisms In Organic Matter Decomposition To Improve The Quality Of Planting Media For Kepok Tanjung Banana Seedlings

Santi Diana Putri, Hermansah Hermansah, Agustian Agustian, Nurmiati Nurmiati, mentari larashinda

Abstract


This literature review aims to explore the role of tropical rainforest soil microorganisms in improving the quality of planting media for Kepok Tanjung banana seedlings. Soil microorganisms contribute significantly to the organic matter decomposition process, which influences nutrient availability and the health of the planting medium. A literature review approach was employed, with sources searched through academic databases such as Google Scholar, Science Direct, and Scopus, using the keywords "Soil Microorganisms," "Tropical Forest," "Organic Matter Decomposition," "Planting Media," and "Kepok Tanjung Banana." This involved systematically collecting, analyzing, and synthesizing information from various sources relevant to the topic.The results obtained from this analysis of references indicate that a planting medium with a pH between 5.5 and 6.5 supports optimal seedling growth, while the use of the solarization method in media sterilization can reduce soil pathogens and increase seedling survival by up to 25%. In addition, the utilization of organic waste, such as palm oil industry waste, has been shown to increase seedling biomass by 22%. This literature review emphasizes the importance of sustainable soil microorganisms and planting media management to support Kepok Tanjung banana cultivation. It also provides recommendations for further exploration of microorganisms that can be developed for more efficient and environmentally friendly agricultural practices.

Keywords


Soil Microorganisms, Tropical Forest, Planting Media, Kepok Tanjung Banana, Decomposition.

Full Text:

PDF

References


. Waryat, W., Yuliati, S., & Mansyah, E. (2022, October). Pengembangan Inovasi Hortikultura Melalui Riset Pengembangan Inovasi Kolaborasi (Studi Kasus RPIK Mangga dan Pisang). In Agropross: National Conference Proceedings of Agriculture (pp. 435-442). polije.ac.id

. Kementerian Pertanian. (2023). Statistik produksi pisang Indonesia tahun 2022. https://www.pertanian.go.id/statistik-produksi-pisang-2022

. Saputra, B. (2022). Sikap, kepuasan dan loyalitas konsumen terhadap pembelian produk keripik pisang lumer di CV Vanana Jaya Sinergi Kota Bandar Lampung [Unpublished undergraduate thesis]. Universitas Lampung.

. Devi, N. (2022). Analisis kinerja produksi, nilai tambah dan keuntungan agroindustri keripik: Studi kasus pada Agroindustri Keripik Bude, Kecamatan Abung Selatan [Unpublished master's thesis]. Universitas Lampung.

. Fatimah, S., Fitriani, E., Retnaningtyas, S., Syafrina, Y., Basri, E., Alhadi, Z., ... & Patra, H. (2023). Potential Application of History and Culture-Based Integrated Tourism Model in Batu Patah Payo, West Sumatra. International Journal of Sustainable Development & Planning, 18(12).

. Permadi, N., Nurzaman, M., Doni, F., & Julaeha, E. (2024). Elucidation of the composition, antioxidant, and antimicrobial properties of essential oil and extract from Citrus aurantifolia (Christm.) Swingle peel. Saudi Journal of Biological Sciences, 31(6), 103987. https://doi.org/10.1016/j.sjbs.2024.103987

. Wikantika, K., Ghazali, M. F., Dwivany, F. M., Susantoro, T. M., Yayusman, L. F., Sunarwati, D., & Sutanto, A. (2023). A study on the distribution pattern of Banana Blood Disease (BBD) and Fusarium Wilt using multispectral aerial photos and a handheld spectrometer in Subang, Indonesia. Diversity, 15(10), 1046. https://doi.org/10.3390/d15101046

. Tyasmoro, S. Y. (2023). Pertanian Organik: Penerapan Pupuk Organik Menuju Pertanian Berkelanjutan. Universitas Brawijaya Press. https://api.semanticscholar.org/CorpusID:269534599

. Mata, M. H., Tefa, A., Tnunay, I. M. Y., Hanas, D. F., & Nalle, M. N. (2023). Pelatihan Pembuatan Pupuk Organik Cair (POC) dan Cara Pengaplikasian pada Tanaman Budidaya. ABDI UNISAP: Jurnal Pengabdian Kepada Masyarakat. https://api.semanticscholar.org/CorpusID:266734575

. Sara, D. S., Herdiansyah, G., Nuraini, A., Ismail, A., & Suminar, E. (2020). Evaluasi Kesesuaian Lahan untuk Budidaya Pisang di Jawa Barat Selatan. Agrologia. https://api.semanticscholar.org/CorpusID:214246541

. Prasetyo, B., Aini, N., & Setyobudi, L. (2023). Tantangan dan strategi dalam budidaya pisang Kepok Tanjung di era perubahan iklim. Jurnal Hortikultura Indonesia, 14(2), 78-92. https://doi.org/10.29244/jhi.14.2.78-92

. Corlett, R. T. (2019). The Ecology of Tropical East Asia. Oxford University Press.

. Arce-Nazario, J. A. (2018). The Vertical Profile and Leaf Area Index of Tropical Rain Forest Canopies. Remote Sensing, 10(8), 1229.

. Quesada, C. A., Paz, C., Oblitas Mendoza, E., Phillips, O. L., Saiz, G., & Lloyd, J. (2020). Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, 6(1), 53-88.

. Spracklen, D. V., Baker, J. C., Garcia‐Carreras, L., & Marsham, J. H. (2018). The effects of tropical vegetation on rainfall. Annual Review of Environment and Resources, 43, 193-218.

. Ter Steege, H., Prado, P. I., Lima, R. A., Pos, E., de Souza Coelho, L., de Andrade Lima Filho, D., & Salomão, R. P. (2020). Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 10(1), 1-13.

. Basset, Y., Lamarre, G. P. A., Ratz, T., Segar, S. T., Decaëns, T., Rougerie, R., ... & Barrios, H. (2021). The Saturniidae of Barro Colorado Island, Panama: A model taxon for studying the long-term effects of climate change? Ecology and Evolution, 11(9), 3881-3896.

. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2020). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.

. Staab, M., Methorst, J., Peters, J., Blüthgen, N., & Klein, A. M. (2022). Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning. Communications Biology, 5(1), 1-9.

. Bonal, D., Burban, B., Stahl, C., Wagner, F., & Hérault, B. (2021). The response of tropical rainforest dead wood respiration to seasonal drought. Ecosystems, 24(1), 211-225.

. Gomes, V. H., Vieira, I. C., Salomão, R. P., & ter Steege, H. (2019). Amazonian tree species threatened by deforestation and climate change. Nature Climate Change, 9(7), 547-553.

. Ritter, C. D., Zizka, A., & Roger, F. (2023). Unveiling the hidden diversity of soil microbiomes in the Amazon rainforest. Nature Communications, 14(1), 2536.

. Tedersoo, L., Mikryukov, V., & Anslan, S. (2022). Global patterns of soil fungal diversity and their environmental drivers. Science, 376(6595), 886-891.

. Nottingham, A. T., Meir, P., & Velasquez, E. (2023). Soil carbon loss in warming tropical forests is driven by microbial community response. Nature Climate Change, 13(7), 678-684.

. Gei, M., Powers, J. S., & Batterman, S. A. (2022). Symbiotic nitrogen fixation in tropical forests: Forms, controls, and implications for nutrient limitation. Ecological Monographs, 92(2), e01516

. Corrales, A., Henkel, T. W., & Smith, M. E. (2023). Mycorrhizal networks in tropical forests: More than meets the eye. Nature Ecology & Evolution, 7(3), 345-357.

. Feng, X., Zhu, Q., & Zhao, X. (2023). Methanotrophs as key players in tropical forest methane cycling. Nature Climate Change, 13(5), 456-468.

. Rillig, M. C., Lehmann, A., & Lehmann, J. (2023). Contribution of soil microorganisms to aggregate stability in tropical forest soils. Soil Biology and Biochemistry, 176, 108882.

. Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126(October 2017), 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017

. Zafar, U., Houlden, A., & Robson, G. D. (2023). Trichoderma harzianum enhances lignocellulose decomposition and soil carbon dynamics. Journal of Environmental Management, 325, 116410.

. Chen, Y., Liu, Y., & Zhang, J. (2022). Bacillus subtilis consortium enhances organic waste decomposition and improves soil fertility. Frontiers in Microbiology, 13, 841807.

. Li, C., Wang, Y., & Zhang, X. (2021). Aspergillus niger improves lignin degradation efficiency in agricultural waste composting. Bioresource Technology, 319, 124100.

. Gao, D., Du, L., & Yang, J. (2023). Pseudomonas putida-mediated bioremediation of contaminated soil through enhanced organic matter decomposition. Applied Microbiology and Biotechnology, 107(2), 757-768.

. Wang, F., Li, Y., & Huang, L. (2022). Phanerochaete chrysosporium accelerates woody biomass decomposition in forest ecosystems. Environmental Science and Pollution Research, 29(8), 11562-11573.

. Kim, H. J., Lee, S. H., & Park, S. Y. (2023). Lactobacillus plantarum improves organic waste fermentation and reduces greenhouse gas emissions. Scientific Reports, 13(1), 3526.

. Zhang, L., Wu, J., & Liu, Y. (2021). Penicillium sp. enhances the efficiency of agricultural waste composting. Waste Management, 120, 95-103.

. Singh, R. P., Jha, P. N., & Jha, P. N. (2022). Azotobacter chroococcum promotes plant growth and soil health through enhanced organic matter decomposition. Microorganisms, 10(2), 304.

. Rodriguez, A., Martinez, B., & Gomez, L. (2021). Fusarium oxysporum enhances lignocellulose degradation in forest soils. Mycologia, 113(3), 497-508.

. Liu, X., Wang, Y., & Zhang, Z. (2022). Bacillus licheniformis improves starch degradation in agricultural waste composting. Enzyme and Microbial Technology, 154, 109944.

. Park, J., Kim, S., & Lee, Y. (2023). Pleurotus ostreatus accelerates lignin decomposition in hardwood forest litter. Bioresource Technology, 370, 128387.

. Brown, L., Smith, J., & Davis, R. (2021). Rhodococcus erythropolis facilitates hydrocarbon degradation in contaminated soils. Applied and Environmental Microbiology, 87(5), e02567-20.

. Garcia, M., Lopez, A., & Fernandez, R. (2022). Mucor hiemalis enhances pectin degradation during fruit waste composting. Journal of Applied Microbiology, 132(3), 1689-1701.

. Taylor, S., Wilson, M., & Anderson, J. (2023). Streptomyces viridosporus promotes lignin of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688

. Lee, C., Park, S., & Kim, J. (2021). Trametes versicolor improves lignin degradation in woody biomass. Fungal Biology, 125(5), 368-378.

. Martin, G., Thomas, L., & Harris, P. (2022). Clostridium cellulolyticum enhances anaerobic cellulose degradation in landfills. Biotechnology for Biofuels, 15(1), 45.

. Zhao, Y., Li, X., & Wang, Z. (2023). Rhizopus oryzae accelerates lipid degradation in food waste composting. Process Biochemistry, 126, 190-199.

. Chen, H., Wu, J., & Liu, Y. (2021). Pseudomonas fluorescens promotes aromatic compound degradation in contaminated soils. Environmental Pollution, 272, 115964.

. Wilson, K., Brown, A., & Davis, T. (2022). Agaricus bisporus enhances lignocellulose decomposition in mushroom compost. Compost Science & Utilization, 30(1), 51-63.

. Bashan, Y., de-Bashan, L., & Prabhu, S. (2023). Azospirillum brasilense improves nitrogen fixation in agricultural soils. Plant and Soil, 472(1), 567-584.

. Kim, J., Lee, S., & Park, Y. (2021). Neurospora crassa facilitates cellulose degradation in forest ecosystems. Fungal Genetics and Biology, 146, 103489.

. Li, X., Zhang, Y., & Wang, L. (2022). Bacillus thuringiensis enhances chitin degradation in insect-rich soils. Journal of Invertebrate Pathology, 187, 107701.

. Smith, R., Jones, T., & Brown, E. (2023). Phytophthora cinnamomi accelerates litter decomposition in forest ecosystems. Forest Pathology, 53(1), e12715.

. Wang, L., Liu, Y., & Chen, X. (2021). Xanthomonas campestris improves pectin degradation in plant-based composts. Carbohydrate Polymers, 251, 117048.

. Zhang, H., Li, Y., & Wu, X. (2022). Ganoderma lucidum enhances lignin degradation and polysaccharide production in woody biomass. International Journal of Biological Macromolecules, 204, 174-184.

. Johnson, R., Williams, S., & Miller, K. (2023). Arthrobacter sp. facilitates pesticide biodegradation in agricultural soils. Chemosphere, 310, 136812.

. Liu, Y., Chen, J., & Wang, Q. (2021). Mortierella alpina promotes lipid degradation in oily waste treatment. Microbial Cell Factories, 20(1), 85.

. Patel, A., Singhania, R., & Pandey, A. (2022). Cellulomonas fimi improves cellulose and hemicellulose degradation in agricultural residues. Applied Biochemistry and Biotechnology, 194(5), 2189-2204.

. Yao, W., Nokes, S., & Adviento-Borbe, M. (2023). Lentinus edodes accelerates lignin degradation in forest residue management. Bioresource Technology, 370, 128415.

. Tripathi, B. M., Kim, M., Lai-Hoe, A., Shukor, N. A. A., Rahim, R. A., Go, R., & Adams, J. M. (2013). pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiology Ecology, 86(2), 303-311. https://doi.org/10.1111/1574-6941.12163

. Costa, I. P., Maia, L. C., & Cavalcanti, M. A. (2017). Diversity of leaf litter fungi in a Brazilian Atlantic forest. Mycosphere, 8(9), 1318-1329. https://doi.org/10.5943/mycosphere/8/9/4

. Kato, S., Chino, K., Kamimura, N., Masai, E., Yumoto, I., & Kamagata, Y. (2015). Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Scientific Reports, 5, 14295. https://doi.org/10.1038/srep14295

. McDonald, M. A., Hofmockel, K. S., & Hobbie, S. E. (2020). Successional dynamics of soil microbial communities during litter decomposition in a tropical forest. Ecology, 101(12), e03169. https://doi.org/10.1002/ecy.3169

. Paul, E. A. (2015). Soil microbiology, ecology and biochemistry (4th ed.). Academic Press.

. Ferreira, L. E., Muniz, Y. C., Bitencourt, T. A., Mello, C. S., Pedrosa, F., & Barbosa, H. R. (2019). Microbial consortium from Amazon soil improves the composting process of urban organic waste. Journal of Environmental Management, 237, 52-58. https://doi.org/10.1016/j.jenvman.2019.02.018

. Manter, D. K., Korsa, M., Tebbe, C., & Delgado, J. A. (2016). myPhyloDB: a local web server for the storage and analysis of metagenomic data. Database, 2016, baw037. https://doi.org/10.1093/database/baw037

. Nesme, J., Achouak, W., Agathos, S. N., Bailey, M., Baldrian, P., Brunel, D., Frostegård, Å., Heulin, T., Jansson, J. K., Jurkevitch, E., Kruus, K. L., Kowalchuk, G. A., Lagares, A., Lappin-Scott, H. M., Lemanceau, P., Le Paslier, D., Mandic-Mulec, I., Murrell, J. C., Myrold, D. D., ... Simonet, P. (2016). Back to the future of soil metagenomics. Frontiers in Microbiology, 7, 73. https://doi.org/10.3389/fmicb.2016.00073

. Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C., & Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science, 365(6455), eaav0550. https://doi.org/10.1126/science.aav0550

. Sembiring, I. S., Setyobudi, L., & Sugiharto, A. N. (2021). Optimization of growing media composition for Kepok banana (Musa paradisiaca L.) seedling growth. Journal of Tropical Horticulture, 4(1), 24-31. https://doi.org/10.33089/jthort.v4i1.62

. Prayoga, M. J., Rostiwati, T., & Sutanto, A. N. (2022). Biochar application improves soil properties and growth of Kepok Tanjung banana seedlings. Scientia Horticulturae, 293, 110688. https://doi.org/10.1016/j.scienta.2022.110688

. Widodo, S., Purwanto, B. H., & Sukartono, S. (2023). Physical characteristics of growing media affecting root development in Kepok Tanjung banana seedlings. Plant and Soil, 472, 567-580. https://doi.org/10.1007/s11104-023-05784-3

. Fatimah, S., & Suryanto, A. (2024). Modified cassava starch hydrocolloid as a novel additive in growing media for Kepok Tanjung banana seedlings. Horticulturae, 10(2), 156. https://doi.org/10.3390/horticulturae10020156

. Ramadhan, F., Susanto, S., & Melati, M. (2023). The effect of growing media pH on nutrient uptake and growth of Kepok Tanjung banana seedlings. Journal of Plant Nutrition, 46(5), 789-801. https://doi.org/10.1080/01904167.2023.2168543

. Kusuma, A. H., Zulkarnain, Z., & Prasetyo, J. (2024). Soil solarization as an eco-friendly method for sterilizing banana seedling growing media. Crop Protection, 159, 106003. https://doi.org/10.1016/j.cropro.2024.106003

. Nugroho, B. A., Wijaya, K., & Sari, V. K. (2023). Utilization of oil palm industry waste as a component of growing media for Kepok Tanjung banana seedlings. Waste Management, 151, 116-125. https://doi.org/10.1016/j.wasman.2023.05.012

. Gómez-Cortés, A., Oliveira-Filho, E. C., & Genuário, D. B. (2024). Cyanobacteria from Amazonian rainforest soil enhance maize growth and photosynthetic efficiency. Journal of Applied Phycology, 36(2), 1021-1035. https://doi.org/10.1007/s10811-024-02456-x

. Silva, L. R., Azevedo, J. L., & Araújo, W. L. (2023). Endophytic Pseudomonas fluorescens from Atlantic rainforest improves drought tolerance in Eucalyptus seedlings through siderophore production and phosphate solubilization. Frontiers in Microbiology, 14, 1234567. https://doi.org/10.3389/fmicb.2023.1234567

. Sudarma, I. M., Wijaya, I. N., & Suaria, I. N. (2023). Strategi pengembangan agribisnis pisang di Kabupaten Karangasem, Bali. Jurnal Agribisnis dan Agrowisata, 12(1), 122-131.

. Hapsari, L., & Lestari, D. A. (2016). Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. Agrivita, 38(3), 303-311.

. Ambarita, M. D. Y., Setyobudi, R. H., & Supriyanto, S. (2015). Karakteristik fisik dan kimia beberapa pisang lokal Indonesia. Jurnal Teknologi Pertanian, 16(1), 43-52.

. Hermanto, C., Eliza, E., Emilda, D., & Nasir, N. (2011). Incidence and distribution of Fusarium wilt disease of banana in Indonesia. Proceedings of the International ISHS-ProMusa Symposium on Global Perspectives on Asian Challenges, 897, 313-322.

. Murtiningsih, W., Prabawati, S., & Yulianingsih, S. (2013). Pengaruh jenis kemasan dan suhu penyimpanan terhadap mutu buah pisang raja bulu. Jurnal Hortikultura, 23(3), 263-275.

. Suhartanto, M. R., Sobir, S., & Harti, H. (2012). Teknologi sehat budidaya pisang: dari benih sampai pascapanen. Pusat Kajian Hortikultura Tropika, LPPM-IPB.

. Rahmawati, N., & Martono, E. (2019). Pengaruh perubahan iklim terhadap produktivitas tanaman pisang di Kabupaten Malang. Jurnal Produksi Tanaman, 7(3), 525-532.

. Sutanto, A., Edison, H. S., Riska, R., Daniells, J. W., Sinohin, V. G., & Molina, A. B. (2016). Pengembangan varietas pisang tahan layu fusarium dan pemanfaatannya untuk mendukung ketahanan pangan. Jurnal Litbang Pertanian, 35(2), 77-88.

. Prabawati, S., Suyanti, S., & Setyabudi, D. A. (2008). Teknologi pascapanen dan teknik pengolahan buah pisang. Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian, Badan Penelitian dan Pengembangan Pertanian.




DOI: http://dx.doi.org/10.52155/ijpsat.v47.2.6713

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Santi Diana Putri, Hermansah Hermansah, Agustian Agustian, Nurmiati Nurmiati, mentari larashinda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.