Quality Assurance Studies of Publicly Desirable Nepal Made PPC Cements via the Instrumental Characterization Methods

Anant Babu Marahatta, Puspa Kamal Dahal

Abstract


The PPC cements and their ultra-fine grainy matrix are widely recognized as ideal engineering materials due to their unique cementitious features owing to dispense exceptional placing, adhering, setting, and enduring abilities. The underlying key parameters deterministic to all these distinctive potentialities are quality of the pozzolana, type of the crystallite phases & their average size distributions, and the particular identities of the chemical moieties/functional groups. The precise assessments of each of them instrumentally in variable technology manufactured yet publicly desirable ready-to-use dry PPC cements always provide the trustworthy means of granting not only their entire qualities but also unequal aptitudes for workability, compressive strength, stability of the C–S–H (I) & C–S–H (II) gluing gels, water penetration & permeability resilience, sustainability of the concrete structures, hair cracking preventions, etc. In this study, we employed XRD and FTIR spectroscopic techniques, and characterized all the founding chemical phases needful to assure the quality of the four topmost PPC cements branded across the commercial markets of Nepal. The critical spectral interpretations of the: (a) diffractograms reveal alite, belite, & silicates as predominant; portlandite, & calcite as premier; fly ash, gypsum, aragonite, & vaterite as subsidiary; and silica, arsenate, & organic traces as ultra-trace crystallite phases; and (b) IR spectrograms verify all the chemical fragments and functional groups of each of these phases such as Ca-O (fly ash); Si-O-Si (silica, α-quartz); S-O of SO42− (gypsum (CaSO4)); CO32− of CaCO3 polymorphs; As-O of AsO43- (calcium arsenates); Si-O of alite (Ca3SiO5) & belite (Ca2SiO4); SiO44- & SiO42- of silicate tetrahedra & polymerized orthosilica (Si2O7)6-; O-H & H-O-H of hydrous portlandite & crystal water of the calcite and gypsum; C-H of organic traces; and O-H of granularly adsorbed/absorbed molecular water (H2O) & H-bound OH (H---OH) segments. We strongly believe that this research article illuminates the standard measures of assessing real quality of the PPC cements and of standardizing their Nepal Standard (NS) codes.

Keywords


PPC cement, Grain morphology, Health hazards, Alite/Belite/Calcite/Gypsum.

Full Text:

PDF

References


(a) P. K. Mehta, P. J. Monteiro, Concrete: Microstructure, Properties, and Materials (McGraw-Hill Education; 2013).

(b) S. Thakuri, S. B. Khatri, S. Thapa, Environ. Sc. Poll. Res., 28, 6762(2021).

S. Mindess, J. F. Young, D. Darwin, Concrete (Prentice-Hall, Upper Saddle River; 2003).

S. H. Kosmatka, B. Kerkhoff, W. C. Panarese, Design and Control of Concrete Mixtures (5420 Old Orchard Road Skokie, Illinois; 2008).

A. M. Neville, Properties of Concrete (Pearson Education; 2011).

N. N. Kencanawati1, S. Rawiana1, N. P. R. Darmayanti, Aceh Int. J. Sci. Tech., 9(1), 40 (2020).

A. Jayaswal, Int. Res. J. Mod. Eng. Tech. Sci., 3(3), 871(2021).

R. Kumar, Nepal struggles to balance nature and industry, Nepali Times, 2022 (Available: https://nepalitimes.com/banner/nepal-struggles-to-balance-nature-and-industry)

(a) K. Prasain, Nepal will require 26 million tonnes of cement annually by 2024-25, The Kathmandu Post, 2021 (Available: https://kathmandupost.com/money/2021/05/21/nepal-will-require-26-million-tonnes-of-cement-annually-by-2024-25-report-says#:~:text=Krishana%20Prasain&text=Nepal%20is%20estimated%20to%20require,Rastra%20Bank%20on%20Friday%20showed).

(b) Nepal become self-reliant in clinker, Khabarhub, 2019 (Available: https: //english. khabarhub.com/2019/09/53872/).

Top 12 Nepali Cement Brands 2024, 2024 (Available: https://insightsnp.com/top-12-nepali-cement-brands-2023/).

(a) Nepal cement worth 170 million exported, Rastrita Samachar Samiti, 2023 (Available:https://nepalnews.com/s/business/nepal-cement-worth-170-million-exported#: ~:text=Two%20Nepali%20cement%20industries%20have,cement%20since%20October%2017%2C%202022).

(b) D. Paudel, Increase in cement exports raises hope in Nepal’s foreign trade, Myrepublica Nagariknews, 2024 (Available: https://myrepublica.nagariknetwork.com/news/increase-in-cement-exports-raises-hope-in-nepal-s-foreign-trade/)

(c) Nepal (Imports and Exports), Trade Economy (Available: https://trendeconomy.com /data/h2/Nepal/6810).

P. R. Pandey, N. Banskota, Bul. Dep. Geol. Trib. Univ., 11, 71(2000).

P. Banstola, K. K. Shrestha, I. Thapa, A. K. Mishra, Int. J. App. Eng. and Management. Lett.,5(2), 26(2021).

G. Baral, A. B. Marahatta, Asian J. Appl. Chem. Res., 14(4), 34(2023).

Department of Geology and Mines, Nepal. Feasibility of clays in Nepal for use in Limestone Calcined Clay Cement (LC). (Available: chrome-extension:// efaidnbmnnnibpcajpcglclefindmkaj/https://www.tara.in/assets/pdf/blue-white-modern-profesional-business-flyer.pdf)

A. B. Marahatta, G. Baral, K. Dhital, Int. J. Prog. Sci. Tech., 45(2), 1(2024).

D. Roy, S. K. Sethy, Int. J. Eng. Res. Sci., 3(4), 59(2017).

R. Maskey, Energy Use in Nepalese Cement Industries: Case of Udayapur Cement Industries Limited, 2016 (Available: https://www.academia.edu/68371430)

J. I. Langford, J. C. Wilson, J. App. Cryst., 11, 102(1978).

D. M. Smilgies, J. App. Cryst., 42, 1030(2009).

R. L. Amhudo, T. T. Raka, I. G. Putu, Civil Eng. Journal, 4(8), 1760(2018).

C. Mounira, Journal of Cement Based Composites, 1, 7(2021).

M. Berra, T. Mangialardi, A. E. Paolini, Adv. Mat. Sci. Eng. 4853141, 1(2018).

A. Singh, S. Gupta, J. Singh, N.P Singh, Int. J. Res. Eng. Tech., 4(5), 60(2015).

R. Vedalakshmia, A. Sundara Rajb, S. Srinivasana, K. G. Babu, Thermochimica Acta 407, 49(2003).

P. A. V. Meulen, E. R. V. Leeuwen, J. Agri. Res., 35(4), 1927.

F. P. Glasser, Mat. Sc. Conc. Calcium Hydroxide in Concrete, 11 (2001).

Y. Lv, J. Qiao, W. Han, B. Pan, X. Jin, H. Peng, Materials, 16(6), 2305(2023).

R. Agarwal, N. Agnihotri, U. S. Vidyarthi, J. Eng. App. Sc., 8(3), 1(2021).

Z. Liu, X. N. Li, D. Deng, G. D. Schutter, L. Hou. Construction and Building Materials, 123, 127(2016).

T. Staněk, P. Sulovský, M. Boháč, Cement and Concrete Research, 92, 21(2017).

MIT Concrete Sustainability Hub, Concrete Science Platform White Paper. Improving Concrete Sustainability through Alite and Belite Reactivity (2013). (Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://cshub.mit.edu/sites/default/files/documents/alite-belite-whitepaper.pdf)

S. Sadeghpour, A. Najafizadeh, A. Kermanpur, Science & Engineering A, 584, 177(2013).

S. Kumar, V. D. Mote, R. Prakash, V. Kumar, Materials Focus, 5, 545(2016).

P. B. Belavi, G. N. Chavan, L. R. Naik, V. L. Mathe, R. K. Kotnala, Int. J. Scient. Tech. Res., 2(12), 298(2013).

S. Shim, T. Lee, S. Yang, N. Noor, J. Kim, Materials (Basel), 14(16), 4663(2021).

M. Y. A. Mollah, M. Kesmez, D. L. Cocke, Sci. Tot. Env., 325, 255(2004).

M. Y. A. Mollah, F. Lu, D. L. Cocke, Sci. Tot. Env., 224, 57(1998).

National Research Council, National Academy of Sciences, National Academy of Engineering. Guide to compounds of interest in cement and concrete research, 1972 (pp. 1-63) (Available: https://onlinepubs.trb.org/Onlinepubs/sr/sr127.pdf)

L. Badurina, B. Segvic, O. Mandic, G. Zanoni, Minerals, 10(10), 899(2020).

M. Shiraishi, M. Inagaki, Carbon Alloys, 161(2003).

P. Głuchowski, R. Tomala, D. Kujawa, V. Boiko, T. Murauskas, P. Solarz, J. Phys. Chem. C, 126(16), 7127(2022).




DOI: http://dx.doi.org/10.52155/ijpsat.v46.2.6478

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Anant Babu Marahatta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.