Resting-State Network Functional Connectivity Analysis: A Multimodal Imaging and Computational Modeling Approach

Stephanie Kew Yen Nee

Abstract


       Functional connectivity is referred to as the temporal interaction between different brain regions that are spatially distant from each other. It is commonly examined during resting states by classifying resting-state functional connectivity (rs-FC) patterns and their associated synchronized activity to understand the underlying neural mechanisms that support cognitive processes. With the advancement of cutting-edge neuronal systems, multimodal imaging, and computational advances have served as promising tools for rs-FC studies. Despite having reviewed resting-state networks and their influence on a range of health anomalies in the existing literature, there nevertheless remains a lack of reviews that delve into diverse imaging modalities and computational modeling approaches for rs-FC analysis. Therefore, this systematic review aims to provide an understanding of these technologies that analyze the resting-state network functional connectivity and their correlation to cognitive functions. Through a systematic approach to analyzing studies, the most frequently employed modality was functional magnetic resonance imaging (fMRI) due to its high spatial resolution. Key findings demonstrated that higher functional connectivity levels are often linked to greater Exin ratios, which subsequently affect large-scale functional brain synchronization. Across various computational models, a non-parametric classifier has shown promise for rs-FC analysis in various contexts due to its ability to handle multiple EEG features. Moreover, the multivariate model is identified to have superior performance with a predictive area under the curve (AUC) of ~0.77. Overall, the present study underscores the vitality of using imaging and computational tools in elucidating the intricacies of rs-FC and its effects on individual cognition. 


Keywords


imaging modalities, simulation models, neural connectivity, baseline state, cognitive functions

Full Text:

PDF

References


Lv, H., Wang, Z., Tong, E., Williams, L. M., Zaharchuk, G., Zeineh, M., Goldstein-Piekarski, A. N., Ball, T. M., Liao, C., & Wintermark, M. (2018). Resting-state functional MRI: Everything that nonexperts have always wanted to know. American Journal of Neuroradiology, 39(8), 1390-1399. https://doi.org/10.3174/ajnr.A5527

Li, K., Zou, Z., Zhang, H., Wang, L., Zeng, Y., Qi, F., & Zhang, C. (2022). Effective prediction of neurofeedback based on functional connection characteristics of brain network in insomnia. In Proceedings of the 1st International Conference on Health Big Data and Intelligent Healthcare, 151–156. https://doi.org/10.5220/0011235400003438

Pereira, D. J., Pereira, J., Sayal, A., Morais, S., Macedo, A., Direito, B., & Castelo-Branco, M. (2024). Functional and structural connectivity success predictors of real-time fMRI neurofeedback targeting DLPFC: Contributions from central executive, salience, and default mode networks. Network Neuroscience, 8(1), 81-95. https://doi.org/10.1162/netn_a_00338

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664-1671. https://doi.org/10.1038/nn.4135

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., & Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506-518. https://doi.org/10.1038/nprot.2016.178

Chiarelli, A. M., Zappasodi, F., di Pompeo, F., & Merla, A. (2017). Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics, 4(4), 1. https://doi.org/10.1117/1.nph.4.4.041411

Butler, L. K., Kiran, S., & Tager-Flusberg, H. (2020). Functional near-infrared spectroscopy in the study of speech and language impairment across the life span: A systematic review. American Journal of Speech-Language Pathology, 29(3), 1674–1701. https://doi.org/10.1044/2020_AJSLP-19-00050

Talukdar, M. T., Frost, H. R., & Diamond, S. G. (2015). Modeling neurovascular coupling from clustered parameter sets for multimodal EEG-NIRS. Computational and Mathematical Methods in Medicine, 2015, 13. https://doi.org/10.1155/2015/830849

Hahn, A., Lanzenberger, R., & Kasper, S. (2019). Making sense of connectivity. International Journal of Neuropsychopharmacology, 22(3), 194-207. https://doi.org/10.1093/ijnp/pyy100

Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87-95. https://doi.org/10.1016/j.tics.2015.10.004

Popovych, O. v., Manos, T., Hoffstaedter, F., & Eickhoff, S. B. (2019). What can computational models contribute to neuroimaging data analytics? Frontiers in Systems Neuroscience, 12. https://doi.org/10.3389/fnsys.2018.00068

Demirtaş, M., Falcon, C., Tucholka, A., Gispert, J. D., Molinuevo, J. L., & Deco, G. (2017). A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer’s disease. NeuroImage: Clinical, 16, 343–354. https://doi.org/10.1016/j.nicl.2017.08.006

Seitzman, B. A., Snyder, A. Z., Leuthardt, E. C., & Shimony, J. S. (2019). The state of resting state networks. Topics in Magnetic Resonance Imaging, 28(4), 189-196. https://doi.org/10.1097/RMR.0000000000000214

Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience and Biobehavioral Reviews, 56, 330-344. https://doi.org/10.1016/j.neubiorev.2015.07.014

Badhwar, A. P., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., & Bellec, P. (2017). Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 8, 73-85. https://doi.org/10.1016/j.dadm.2017.03.007

Hull, J. v., Jacokes, Z. J., Torgerson, C. M., Irimia, A., van Horn, J. D., Aylward, E., Bernier, R., Bookheimer, S., Dapretto, M., Gaab, N., Geschwind, D., Jack, A., Nelson, C., Pelphrey, K., State, M., Ventola, P., & Webb, S. J. (2017). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205. Frontiers Media S.A. https://doi.org/10.3389/fpsyt.2016.00205

Hohenfeld, C., Werner, C. J., & Reetz, K. (2018). Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker? NeuroImage: Clinical. 18, 849-870. https://doi.org/10.1016/j.nicl.2018.03.013

Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser, N. S., & Saripan, M. I. (2021). Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer’s disease and mild cognitive impairment: A systematic review. Human Brain Mapping, 42(9), 2941-2968. https://doi.org/10.1002/hbm.25369

Morelli, N., Johnson, N. F., Kaiser, K., Andreatta, R. D., Heebner, N. R., & Hoch, M. C. (2021). Resting state functional connectivity responses post-mild traumatic brain injury: a systematic review. Brain Injury, 35(11), 1326-1337. https://doi.org/10.1080/02699052.2021.1972339

Premi, E., Cauda, F., Gasparotti, R., Diano, M., Archetti, S., Padovani, A., & Borroni, B. (2014). Multimodal fMRI resting-state functional connectivity in Granulin mutations: The case of fronto-parietal dementia. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0106500

Tewarie, P., Hillebrand, A., van Dellen, E., Schoonheim, M. M., Barkhof, F., Polman, C. H., Beaulieu, C., Gong, G., van Dijk, B. W., & Stam, C. J. (2014). Structural degree predicts functional network connectivity: A multimodal resting-state fMRI and MEG study. NeuroImage, 97, 296-307. https://doi.org/10.1016/j.neuroimage.2014.04.038

Li, R., Zhu, X., Yin, S., Niu, Y., Zheng, Z., Huang, X., Wang, B., & Li, J. (2014). Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Frontiers in Aging Neuroscience, 6, 39. https://doi.org/10.3389/fnagi.2014.00039

van den Heuvel, M. P., Scholtens, L. H., Turk, E., Mantini, D., Vanduffel, W., & Feldman Barrett, L. (2016). Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting-state functional connectivity. Human Brain Mapping, 37(9), 3103-3113. https://doi.org/10.1002/hbm.23229

Kocher, M., Jockwitz, C., Caspers, S., Schreiber, J., Farrher, E., Stoffels, G., Filss, C., Lohmann, P., Tscherpel, C., Ruge, M. I., Fink, G. R., Shah, N. J., Galldiks, N., & Langen, K. J. (2020). Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. NeuroImage: Clinical, 27. https://doi.org/10.1016/j.nicl.2020.102287

Champagne, A. A., Coverdale, N. S., Ross, A., Chen, Y., Murray, C. I., Dubowitz, D., & Cook, D. J. (2020). Multi-modal normalization of resting-state using local physiology reduces changes in functional connectivity patterns observed in mTBI patients. NeuroImage: Clinical, 26. https://doi.org/10.1016/j.nicl.2020.102204

Ruppert, M. C., Greuel, A., Freigang, J., Tahmasian, M., Maier, F., Hammes, J., van Eimeren, T., Timmermann, L., Tittgemeyer, M., Drzezga, A., & Eggers, C. (2021). The default mode network and cognition in Parkinson’s disease: A multimodal resting-state network approach. Human Brain Mapping, 42(8), 2623-2641. https://doi.org/10.1002/hbm.25393

Overbeek, G., Gawne, T. J., Reid, M. A., Kraguljac, N. v., & Lahti, A. C. (2021). A multimodal neuroimaging study investigating resting-state connectivity, glutamate and GABA at 7 T in first-episode psychosis. Journal of Psychiatry and Neuroscience, 46(6), E702–E710. https://doi.org/10.1503/JPN.210107

Trambaiolli, L. R., Cassani, R., Biazoli, C. E., Cravo, A. M., Sato, J. R., & Falk, T. H. (2022). Multimodal resting-state connectivity predicts affective neurofeedback performance. Frontiers in Human Neuroscience, 16. https://doi.org/10.3389/fnhum.2022.977776

Sirpal, P., Damseh, R., Peng, K., Nguyen, D. K., & Lesage, F. (2022). Multimodal autoencoder predicts fNIRS resting state from EEG signals. Neuroinformatics, 20(3), 537-558. https://doi.org/10.1007/s12021-021-09538-3

Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory and Cognition, 42(7), 1186–1197. https://doi.org/10.3758/s13421-014-0428-8

Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29-52. https://doi.org/10.1111/nyas.12360

Orwig, W., Diez, I., Vannini, P., Beaty, R., & Sepulcre, J. (2020). Creative connections: Computational semantic distance captures individual creativity and resting-state functional connectivity. Journal of Cognitive Neuroscience, 33(3), 499-509. https://doi.org/10.1162/jocn_a_01658

Hansen, E. C. A., Battaglia, D., Spiegler, A., Deco, G., & Jirsa, V. K. (2015). Functional connectivity dynamics: Modeling the switching behavior of the resting state. NeuroImage, 105, 525-535. https://doi.org/10.1016/j.neuroimage.2014.11.001

Fan, L., Su, J., Qin, J., Hu, D., & Shen, H. (2020). A deep network model on dynamic functional connectivity with applications to gender classification and intelligence prediction. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00881

Engemann, D. A., Raimondo, F., King, J. R., Rohaut, B., Louppe, G., Faugeras, F., Annen, J., Cassol, H., Gosseries, O., Fernandez-Slezak, D., Laureys, S., Naccache, L., Dehaene, S., & Sitt, J. D. (2018). Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain: A journal of neurology, 141(11), 3179-3192. https://doi.org/10.1093/brain/awy251

Teufel, C., & Fletcher, P. C. (2016). The promises and pitfalls of applying computational models to neurological and psychiatric disorders. Brain, 139(10), 2600-2608. https://doi.org/10.1093/brain/aww209

Yen, C., Lin, C. L., & Chiang, M. C. (2023). Exploring the frontiers of neuroimaging: A review of recent advances in understanding brain functioning and disorders. Life, (Basel, Switzerland), 13(7), 1472. https://doi.org/10.3390/life13071472

Sohrabpour, A., Lu, Y., Worrell, G., & He, B. (2016). Imaging brain source extent from EEG/MEG by means of an iteratively reweighted edge sparsity minimization (IRES) strategy. NeuroImage, 142, 27-42. https://doi.org/10.1016/j.neuroimage.2016.05.064

Hamdan, S., Dubray, K., Treutel, J., Paudyal, R., & Poudel, K. (2023). Reducing MEG interference using machine learning. Machine Learning with Applications, 12, 100462. https://doi.org/10.24433/CO.7062415.v1

Jiang, X., Bian, G. bin, & Tian, Z. (2019). Removal of artifacts from EEG signals: A review. Sensors, 19(5). https://doi.org/10.3390/s19050987




DOI: http://dx.doi.org/10.52155/ijpsat.v44.2.6246

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Stephanie Kew Yen Nee

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.