Spider Mite Detection: An Approach Of A Deep Convolutional Neuronal Network

Naram Isai Hernández Belmontes, Daniel Alaniz Lumbreras, Efrén González Ramírez, Hamurabi Gamboa Rosales

Abstract


Spider mites pose a significant threat to tomato production worldwide, causing devastating yield losses. In Mexico, the world's second-largest tomato producer, these tiny pests are responsible for over 20% of crop loss. This challenge is further amplified by the presence of various tomato viruses. The pressure on the US tomato industry, facing fierce competition from imports, necessitates maintaining high-quality crops. Similarly, China's agricultural sector grapples with substantial damage caused by spider mites across numerous crops, including tomatoes. However, amidst this global concern, recent advancements in artificial intelligence (AI) offer a beacon of hope. Convolutional neural networks (CNNs), a cutting-edge deep learning technique, demonstrate remarkable promise in the early detection of spider mites on tomato plants. Research efforts utilizing CNNs are actively underway in countries like Mexico, India, Saudi Arabia, the USA, Turkey, and China. Our contribution to this global effort involved developing a streamlined CNN architecture specifically designed to enhance spider mite detection accuracy on tomato crops. This innovative approach achieved an impressive 97.56% accuracy rate, with a training time of just 13 minutes. This represents a significant reduction in training time compared to previous research. Furthermore, to ensure robust performance, it meticulously evaluated the model using additional metrics like sensitivity and AUC (Area Under the ROC Curve). This comprehensive approach underscores the effectiveness and reliability of our proposed CNN architecture. By highlighting the global impact of spider mites and the active research efforts across various countries, this revised paragraph emphasizes the urgency of the problem and positions your research as part of a larger international effort. Additionally, it delves deeper into the technical aspects of your CNN model, mentioning metrics like sensitivity and AUC, which demonstrates a more rigorous approach.

Keywords


Convolutional Neural Networks, Spider Mite, Deep Learning, Agriculture

Full Text:

PDF

References


P. C. G. Marín y D. Z. Villarreal, «El origen de la agricultura, la domesticación de plantas y el establecimiento de corredores

biológico-culturales en Mesoamérica», Rev. Geogr. Agríc., n.o 41, pp. 85-113, 2008.

R. Rios, «La Agricultura de Precisión: Una necesidad actual», Rev. Ing. Agric., vol. 1, p. 11, 2021.

J. G G y B. Mallik, «Growth Stage Based Economic Injury Levels for Two Spotted Spider Mite, Tetranychus urticae Koch

(Acari, Tetranychidae) on Tomato, Lycopersicon esculentum Mill», Trop. Agric. Res., vol. 22, ene. 2011, doi:

4038/tar.v22i1.2670.

M. A. Barron y F. Rello, «The impact of the tomato agroindustry on the rural poor in Mexico», Agric. Econ., vol. 23, n.o 3, pp.

-297, 2000, doi: 10.1111/j.1574-0862.2000.tb00280.x.

L. E. Padilla Bernal, A. Rumayor-Rodriguez, O. Veyna, y E. Reyes-Rivasrigue, «Competitiveness of Zacatecas (Mexico)

Protected Agriculture: The Fresh Tomato Industry», Int. Food Agribus. Manag. Rev., vol. 13, ene. 2010.

S. Li, F. Wu, Z. Guan, y T. Luo, «How trade affects the US produce industry: the case of fresh tomatoes», Int. Food Agribus.

Manag. Rev., vol. 25, n.o 1, 2021, Accedido: 1 de diciembre de 2022. [En línea]. Disponible en:

https://ideas.repec.org/a/ags/ifaamr/316366.html

H. Hong, J. Lin, y F. Huang, «Tomato Disease Detection and Classification by Deep Learning», en 2020 International

Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), jun. 2020, pp. 25-29. doi:

1109/ICBAIE49996.2020.00012.

M. Agarwal, A. Singh, S. Arjaria, A. Sinha, y S. Gupta, «ToLeD: Tomato Leaf Disease Detection using Convolution Neural

Network», Procedia Comput. Sci., vol. 167, pp. 293-301, ene. 2020, doi: 10.1016/j.procs.2020.03.225.

M. Jakubowska, R. Dobosz, D. Zawada, y J. Kowalska, «A Review of Crop Protection Methods against the Twospotted Spider

Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods», Agriculture, vol.

, n.o 7, Art. n.o 7, jul. 2022, doi: 10.3390/agriculture12070898.

K. Oku, S. Magalhaes, y M. Dicke, «The presence of webbing affects the oviposition rate of two-spotted spider mites,

Tetranychus urticae (Acari: Tetranychidae)», Exp. Appl. Acarol., vol. 49, pp. 167-72, mar. 2009, doi: 10.1007/s10493-009-

-4.

«Resistance of strawberry genotypes to the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) | Persian

Journal of Acarology», abr. 2022, Accedido: 29 de noviembre de 2022. [En línea]. Disponible en:

https://www.biotaxa.org/pja/article/view/70867

V. Maeda-Gutiérrez et al., «Comparison of Convolutional Neural Network Architectures for Classification of Tomato Plant

Diseases», Appl. Sci., vol. 10, n.o 4, Art. n.o 4, ene. 2020, doi: 10.3390/app10041245.

G. D. Chiluisa González, «Detección de enfermedades en plantas de tomate a través del análisis computacional de sus hojas»,

bachelorThesis, 2021. Accedido: 18 de octubre de 2022. [En línea]. Disponible en:

http://repositorio.utn.edu.ec/handle/123456789/11319

A. K. Rangarajan, R. Purushothaman, y A. Ramesh, «Tomato crop disease classification using pre-trained deep learning

algorithm», Procedia Comput. Sci., vol. 133, pp. 1040-1047, ene. 2018, doi: 10.1016/j.procs.2018.07.070.

D. P. Hughes y M. Salathe, «An open access repository of images on plant health to enable the development of mobile disease

diagnostics». arXiv, 11 de abril de 2016. doi: 10.48550/arXiv.1511.08060.

I. Goodfeellow, Y. Bengio, y A. Courville, Deep learning. MIT press, 2016.

A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc., 2022.

D. P. Kingma y J. Ba, «Adam: A Method for Stochastic Optimization». arXiv, 29 de enero de 2017. doi:

48550/arXiv.1412.6980.

Y. Ho y S. Wookey, «The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling», IEEE

Access, vol. 8, pp. 4806-4813, 2020, doi: 10.1109/ACCESS.2019.2962617.




DOI: http://dx.doi.org/10.52155/ijpsat.v44.1.6164

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Naram Isai Hernández Belmontes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.