The Existence and Characterization of Potential Cellulolytic and Lignolytic Bacteria From Spent Mushroom Substrate of Pleurotus ostreatus L.

Agria Yolanda, Nurmiati Nurmiati, Periadnadi Periadnadi

Abstract


Spent mushroom substrate (SMS) of P. ostreatus is the residual compost waste generated by the mushroom production industry. The main component of P. ostreatus cultivation is sawdust that high of lignocellulosic material. The presence of cellulose and lignin can be the carbon source of indigenous cellulolytic and lignolytic bacteria. The study was conducted to know the existence of indigenous cellulolytic and lignolytic bacteria and determine their activity or potential character. This research was conducted using the purposive sampling method and analyzed descriptively. The result showed the existance of cellulolytic bacteria (41–51×105 cfu/g) and lignolytic bacteria (60-80 × 105) in SMS. PD04S has a higher cellulolytic index and PYK2L has a higher lignolytic index.

Keywords


Cellulolytic index; lignolytic index; Pseudomonas; Paracoccus

Full Text:

PDF

References


H.K. Astuti, and N. Kuswytasari. “Efektifitas Pertumbuhan Jamur Tiram Putih (Pleurotus ostreatus) dengan Variasi Media Kayu Sengon (Paraserianthes falcataria) dan Sabut Kelapa (Cocos nucifera)”. Jurnal Sains dan Seni ITS, 2(3). pp.144-148. 2013

R.A. Jumar, Saputra, and K.A. Putri. Kualitas Kompos Limbah Baglog Jamur Tiram. Prosiding Seminar Nasional Lingkungan Lahan Basah. 6 (1). pp. 1-8. 2021

M. Badu, K.S. Twumasi, and N.O. Boadi. Effects of Lignocellulosic in Wood Used as Substrate on the Quality and Yield of Mushrooms. Food and Nutrition Sciences, vol. 2. pp. 780-784. 2011

A.B. Orth, D.J. Royse, and M. Tien. Ubiquity of Lignin-Degrading Peroxidases among Various Wood-Degrading Fungi. Applied and Environmental Microbiology. pp. 4017-4023. 1993

Murtiyaningsih H, Hazmi H. Isolasi dan Uji Aktivitas Enzim Selulase Pada Bakteri Selulolitik Asal Tanah Sampah. Agritop. 15(2). pp. 293 – 308. 2017

W. Crueger, and A. Crueger. Biotechnology A textbook of Industrial Microbiology Brock, T. D. (trans), 54 – 55, Science Tech, Inc, Madison. 1984.

H. Singh. Mycoremidiation, John Wiley & Sons, Inc. America. 2006.

S.N.S. Rao. Mikroba Tanah dan Pertumbuhan Tanaman Edisi Kedua. Jakarta. UI-PRESS. 1994.

Anand, Vennison, Sankar, Prabhu, Vasan, Raghuraman, Geoffrey, and Vendan. Isolation and Characterization of Bacteria from the Gut of Bombyx Mori that Degrade Cellulose, Xylan, Pectin and Starch and Their Impact on Digestion. J of Insect Science. 10(107). pp. 1-20. 2009

M. Nahrowi, A. Susilowati, and R. Setyaningsih. Screening and Identification of Lignolytic Bacteria from the Forest at Eastern Slope of Lawu Mountain. AIP Conference Proceedings 2002. 2018.

A.R.N. Hashimah, N.A.A. Rahman, S.A. Aziz, and M.A. Hassan. Ligninolytic enzyme production. BioResources. 8(4). pp. 6136–6150. 2013

L. Bandounas, J.P. Wierckx, J.H. Winde, and J.H. Ruijssenaar. Isolation and Characterization of Novel Bacterial Strains Exhibiting Ligninolytic Potential. BMC Biotechnology. 11(94). pp. 1-11. 2011

M. Faizah, T. Ardyati, and Suharjono, Isolation and identification of indigenous cellulolytic bacteria from sago pith waste at palopo, south sulawesi, Indonesia. J. Exp. Life Science. 10(2). 2020

Y.W. Choi, I.J. Hodgkiss, and K.D. Kyde. Enzyme Production by Endophytes of Brucea javanica. Journal Agric Tech. 1. pp.55-66. 2005

S. Ntougias, G.A. Zervakis, N. Kavroulakis, C. Ehaliotis, and K.K. Papadopoulou. Bacterial Diversity in Spent Mushroom Compost Assessed by Amplified rDNA Restriction Analysis and Sequencing of Cultivated Isolate. System. Appl. Microbiol. Vol. 27. pp. 746–754. 2004

M. Kamelia, B.S. Anggoro, and D. Novitasari. Isolation and Enzymatic Selection of Cellulolytic Bacteria from Waste of White Oyster Mushroom (Pleurotus ostreatus) Growing Media Made from Rubber Wood Sawdust (Hevea brasiliensismuell. Arg). Biosfer Jurnal Tadris Pendidikan Biologi. 9(2). pp. 28-42. 2018

M. Morales, C.A. Garc, L.F. Pintor-ibarra, J.J.Alvarado-flores, B. Ve, and J.G. Rutiaga-quiñones. Evaluation and Characterization of Timber Residues of Pinus as an Energy Resource for the Production of Solid Biofuels in an Indigenous Community in Mexico. 2021

I.E. Munifah, Chasanah, and Y.N. Fawzya. Screening of Cellulolytic Bacteria from Indonesia Marine Environment. Prosiding Seminar ISISM (International Seminar of Indonesian Society for Microbiology); Bogor: Perhimpunan Mikrobiologi Cabang Bogor. June 2011

I.M. Sudiana, R.D. Rahayu, H. Imamuddin, and M. Rachmansyah. Celluloytic Bacteria of Soil of Gunung Halimun National Park. Jurnal Biologi. 5 (6). pp.703-710. 2001

V.S. Ferreira-Leitão, M.E.A. Carvalho, and E.P.S. Bon. Lignin Peroxidase Efficiency for Methylene Blue Decolouration: Comparison to Reported Methods. Elsevier: dyes and pigments.vol.74. pp. 230-236. 2007

P.D. Vos, G.M. Garrity, D. Jones, N.R. Krieg, R. Ludwig, F.A. Rainey, K.H. Schleifer, and W.B. Whitman. Bergey’s Manual of Systematic Bacteriology Second Edition: Volume Three: The Firmicutes, London New York: Springer, 2009.

M. Watabe, J.R. Rao, J. Xu, B.C. Millar, R.F. Ward, and J.R. Moore. Identification of Novel Eubacteria From Spent Mushroom Compost (SMC) Waste by DNA Sequence Typing: Ecological Considerations Of Disposal On Agricultural Land. Waste Management. vol. 24. pp.81–86. 2014.

J.S. Gbolagade. Bacteria Associated with Compost Used for Cultivation of Nigerian Edible Mushrooms Pleurotus tuber-regium (Fr.) Singer, and Lentinus squarrosulus (Berk.). African Journal of Biotechnology. 5 (4). pp.338-342, 2006

S. Flimban, S.E. Oh, J.H. Joo, and K.A. Hussein. Characterization and Identification of Cellulose-degrading BacteriaIsolate from a Microbial Fuel Cell Reactor. Biotechnology and Bioprocess Engineering. vol.1. pp.1-10. 2019

Gusmawartati, Agustian, Herviyanti, and Jamsari. Isolation of Cellulolytic Bacteria from Peat Soils as Decomposer of Oil Palm Empty Fruit Bunch. J Trop Soils. 22(1). pp. 47-53. 2017

I.M. Daneshvar, D.G. Hollis, R.S. Weyant, Steigerwalt, A. Whitney, M. Douglas, Macgregor, G. Jean, Mayer, Rassouli, W. Barchet, C. Munro, L. Shuttleworth, and K. Bernard. Paracoccus yeeii sp. nov. (Formerly CDC Group EO-2), a Novel Bacterial Species Associated with Human Infection. Journal of clinical microbiology, 41(3). pp. 1289–1294. 2003.

M.J. Kanis, JJ.. Oosterheert, S. Lin, C.H.E. Boel, and M.B. Ekkelenkamp. Corneal Graft Rejection Complicated by Paracoccus yeei Infection in a Patient Who Had Undergone a Penetrating Keratoplasty. Journal of Clinical Microbiology. 48(1). pp. 323–325. 2010

A. Ferbiyanto, I. Rusmana, and R. Raffiudin. Characterization and Identification of Cellulolytic Bacteria from gut of Worker Macrotermes gilvus. HAYATI Journal of Biosciences. vol.22. pp. 197-200. 2015.

R.S. Breed, and E.G.D. Murray. Smith NR. Bergey’s Manual Determinative Bacteriology. 7th Edition. The Williams & Wilkins Company: Baltimore; 1957.

N.A. Fitriyanto, R. Gutama, T.G. Wandita, Y. Erwanto, T. Hayakawa, and T. Nakagawa. Isolation and Characterization of Alcaligenes sp. from Poultry Farm at Yogyakarta City and The Growth Ability in Animal’s Urine Media. AIP Conference Proceeding; 2019

O.P. Ahlawat, R.D. Rai, and K.R. Dadarwal. Influence of Bacteria from Mushroom Substrate/Casing Soil on Agaricus Bisporus Strain U3. Indian Journal of Microbiology. 42(3). pp.219-223. 2002.

N.M.H. Rizk, Y.S. Eldourghamy, S.A. Aly, S.Z. Sabae and A. Sobhy. Production of Lignin Peroxidase from Aquatic Bacteria, Alcaligenes aquatilis. Egyptian Journal of Aquatic Biology & Fisheries. 24(3). pp. 213 – 223. 2020

D.C. Mohana, S. Thippeswamy, and R.U. Abhishek. Antioxidant, Antibacterial, and Ultraviolet Protective Properties of Carotenoids Isolated from Micrococcus spp. Radiation Protection and Environment. 36(4). pp. 168-174. 2013.




DOI: http://dx.doi.org/10.52155/ijpsat.v37.1.5005

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Agria Yolanda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.