Agroforestry Trees’ Architecture As Evidence Of Domestication: Case Of African Mango Tree In The Dahomey Gap, West Africa
Abstract
In tropical Africa, domestication mostly happens across to traditional agroforestry systems, in which natural variations of plants species are constantly manipulated to induce new and more socioeconomically profitable other ones. Irvingia gabonensis (Irvingiaceae) is one of the most valuable sub-Saharan bioresources that widely grow across West and Central Africa. This research evaluates how different sociocultural groups, in the Dahomey Gap (the climatic and vegetation discontinuity inside the Guinean forest continuum), reshape I. gabonensis trees’ architecture in order to adapt this species to their agroforestry needs. Thus, a total of 180 I. gabonensis trees were collected across the Adja, Nago, Fon, and Ewé sociocultural areas and characterized with eight main trees’ architectural factors: number of branches developed, number of sub trees per individual Irvingia tees, level of first large branches insertion on the trunk, crown diameter, leaf width and length, trees’ total height, and crown shape. A Principal Component Analysis was used to classify individual trees and the phylogenetic relationship among them was evaluated by the mean of a Neighbor Joining tree analysis. Trees from the Adja sociocultural group presented the significantly largest crown diameter, the greatest number of branches, the higher number of subtrees the narrower leaves, and the lowest branching pattern.However, local communities did not significantly impact leaf length and trees’ totalheight. Moreover, semicircular crown shape dominated in the Adja sociocultural area, while the broadly pyramidal and pyramidal ones were more represented across other sociocultural areas. These results are indicators of the advance traditional domestication programme led by the Adja community since decades, as the only opportunity to develop profitable productive systems across the exhausted lands this community populate. Irvingia gabonensis population in this area represent an important gene bank, valuable for intensive cultivation in West and Central Africa.
Keywords
Full Text:
PDFReferences
. Schaal, B. (2019). Plants and people: Our shared history and future. Opinion. 1(1):14-19.
. Chaudhary, B. (2013). Plant Domestication and Resistance to Herbivory. Int. J. Plant Gen., (ID572784):1-14. doi.org/10.1155/2013/572784.
. N’Danikou, S. and Tchokponhoué, D.A.(2019). Plant Domestication for Enhanced Food Security. In Leal Filho, W., Azul, A., Brandli, L., Özuyar, P. and Wall, T. (eds) Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. doi.org/10.1007/978-3-319-69626-3_96-1.
. Ofori, D.A., Gyau, A., Dawson, I.K., Asaah, E., Tchoundjeu, Z. andJamnadass, R. (2014). Developing more productive African agroforestry systems and improving food and nutritional security through tree domestication. Cur. Op. Env. Sust., 6:123-127. doi.org/10.1016/j.cosust.2013.11.016.
. Leakey, R.R.B. (2014). Agroforestry: participatory domestication of trees. In Alfen, N. V. (ed.) Encyclopedia of Agriculture and Food Systems, San Diego. Pp. 253-269.
. Leakey, R. and van Damme, P. (2014). The role of tree domestication in green market product value chain development. Forests, Trees Liv., 23(1-2):116-126. doi.org/10.1080/14728028.2014.887371.
. Atangana, A. R., Khasa, D., Scott C. and Degrande, A. (2014). Tropical Agroforestry. Springer Dordrecht Heidelberg London New York. doi.org/10.1007/978-94-007-7723-1.
. Beedy, T. L., Nyamadzawo, G., Lue deling, E., Kim, D.G., Place, F. and Hadgu, K. (2014). Agroforestry for small and holders of Eastern and Southern Africa. In Rattan, L. and Stewart, B. A. (eds) Soil management of smallholder agriculture. CSR Press – Taylor & Francis Group, Boca Raton, FL, USA. Pp. 237-259.
. Vihotogbé, R., GlèlèKakaï, R., van Andel, T., Berg van Den, R.G., Sinsin, B. and Sosef M.S.M. (2014). Impacts of the diversity of traditional uses and potential economic value on food tree species conservation status: case study of African bush mango trees (Irvingiaceae) in the Dahomey Gap (West Africa). Plant Ecol. Evol.,147(1):109-125. doi.org/10.5091/plecevo.2014.789.
. Leakey, R.R.B., Tientcheu Avana, M.L., Awazi, N.P., Assogbadjo, A.E., Mabhaudhi, T., Hendre, P.S., Degrande, A., Hlahla, S. and Manda, L. (2022). The Future of Food: Domestication and commercialization of indigenous food crops in Africa over the third decade (2012–2021). Sustainability, 14, 2355. doi.org/10.3390/su14042355.
. Jamnadass, R., Ofori, D.A., Dawson, I.K., Tchoundjeu, Z., McMullin, S., Hendre, P.S. and Graudal, L. (2019). Enhancing agroforestry systems through tree domestication. In van Noordwijk, M. (ed.) Sustainable development through trees on farms: agroforestry in its fifth decade. Bogor, Indonesia: World Agroforestry (ICRAF). Pp.45–59.
. Iponga, D.M., Yobo Mikolo, C., Ingram, V., BengoneNssi, N. and Ngoye, A. (2018). Livelihoods, economic contribution and sustainability of the bush mango (Irvingia gabonensis) value chain from three provinces of Gabon. Int. Forest. Rev., 20(1):115-129. doi.org/10.1505/146554818822824291.
. Matsinkou, R.S., Ngondi, J.L., Kuate, D.D., Mbofung, C. andOben, J.E. (2012). Antioxidant and anti-hyperglycemic potential of pulp extracts of Irvingia wombolu fruits. Biol. Med., 4(1):10-19. doi:10.4172/0974-8369.1000153.
. Etebu, E. (2013). Differences in Fruit Size, Postharvest Pathology and Phytochemicals between Irvingia gabonensis and Irvingia wombolu. Sust. Agric. Res., 2(1):52-61. doi:10.5539/sar.v2n1p52.
. Atangana, A. R., Ukafor, V., Anegbeh, P.O., Asaah, E., Tchoundjeu, Z., Fondoun, J.M., Ndoumbe, M. and Leakey, R.R.B.(2002). Domestication of Irvingia gabonensis: 2. The selection of multiple traits for potential cultivars from Cameroun and Nigeria. Agrof. Syst., 55(3):221-229. doi.org/10.1023/A:1020584823505.
. Anegbeh, P. O., Usoro, C., Ukafor, V., Tchoundjeu, Z., Leakey, R.R.B. and Schreckenberg, K. (2003). Domestication of Irvingia gabonensis 3: Phenotypic variation of fruits and kernels in a Nigerian village. Agrof. Syst.,58(3):213-218. doi.org/10.1023/A:1026094021408.
. Vihotogbé, R., Berg van Den, R.G. and Sosef, S.M.M. (2013). Morphological characterization of African bush mango trees (Irvingia species) in the Dahomey Gap (West Africa). Gen. Res. Crop Evol., 60:1597-1614. doi.org/10.1007/s10722-013-9969-0.
. Doust, A. (2007). Architectural Evolution and its Implications for Domestication in Grasses. Ann. Bot., 100(5):941-950. doi.org/10.1093/aob/mcm040.
. Teichmann, T. and Muhr M. (2015). Shaping plant architecture. Front. Plant Sci., 6:233. doi: 10.3389/fpls.2015.00233.
. Demenou, B. B., Piñeiro, R., and Hardy, O.J. (2016). Origin and history of the Dahomey Gap separating West and Central African rain forests: insights from the phylogeography of the legume tree Distemonanthus benthamianus. J. Biogeo., 43(5):1020-1031. doi.org/10.1111/jbi.12688.
. Fofana, J. I., Diarrassouba, N., Koffi, K.K., Dago, N. D., Adou, K. and N’guetta, P. S. (2014). Evaluation de quelques descripteurs morphologiques des populations de teck (Tectona grandis L. F) Verbenaceae de la forêt classée de la Tene (Côte d’Ivoire).Agro. Afr., 26(1):23-33. doi:10.4314/AGA.V26I1.
. Ladipo, D.O., Fondoun, J.M. and Ganga, N. (1996). Domestication of the bush mango (Irvingiaspp): some exploitable intraspecific variations in West and Central Africa. In Leakey, R.R.B., TemuMelnyk, A.B. and Vantomme, P. (eds) Non-Wood Forest Products No. 9: Domestication and Commercialization of Non-Timber Forest products in agroforestry systems. FAO, Rome, Italy. Pp 193-205.
. IPGRI and INIA. (2006). Descriptors for Shea tree (Vitellaria paradoxa). International Plant Genetic Resources Institute, Rome, Italy; Instituto Nacional de Investigación y Tecnología Agrariay Alimentaria, Madrid, Spain.
. Hammer, Ø., Harper, D.A.T. and Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palao. Electro., 4-9. doi.org/10.1007/978-94-007-7723-1.
. Mohannad, G. (2010). Phylogenetic analysis of the genus Pistacia L. (Anacardiaceae) based on morphological data. Asian J. Plant Sc., 9:28-35.doi/org/10.3923/ajps.2010.28.35.
. Padonou, E.A., Tovissodé, F.C., Idohou, R., Salako, V.K., Fantondji, L., Vihotogbé, R., Fandohan, B. andAssogbadjo, A.E. (2017). Pilot assessment of locally acknowledged morphotypes of Irvingiagabonensis (Aubry-Lecomte) Baill. in Southwestern Benin (West Africa). Fruits, 72(5):306-316. doi:10.17660/th2017/72.5.6.
. Tsobeng, A., Muchugi, A., Alercia, A., Chege, J., Degrande, A., Hendre, P., Kangethe, S., Jamnadass, R., Cerutti, A.L., Cognetti, S. and Lopez, F. (2021). Key descriptors for Irvingia spp. (bush mango). World Agroforestry, Nairobi, Kenya and the Food and Agriculture Organization of the United Nations, Rome, Italy, 15p.
. Pickett, S.T.A. and Kempf, S.J. (1980). Branching patterns in forest shrubs and undestroyed trees in relation to habitat. New Phytol., 86:219-228. doi:10.1111/J.1469-8137.1980.TB03191.X.
. Lema, M., Ali, M. and Retuerto, R.(2019). Domestication influences morphological and physiological responses to salinity in Brassica oleracea seedlings. AoB Plants, 11.doi: 10.1093/aobpla/plz046.
. Luo, G., Najafi, J., Correia, P.M.P., Trinh, M.D.L., Chapman, E.A., Østerberg, J.T., Thomsen, H. C., Pedas, P.R., Larson, S., Gao, C., Poland, J., Knudsen, S., DeHaan, L. and Palmgren, M. (2022).Accelerated domestication of New Crops: Yield is Key. Plant Cell. Physio., 63(11):1624-1640. doi.org/10.1093/pcp/pcac065.
. Codjia, J.T.C., Vihotogbé, R., Houessou, L.G., Ponette, Q. and Le Boulengé, E. (2008). Ethnobotany and endogenous conservation of Irvingia gabonensis (Aubry-Lecomte) Baill. in traditional agroforestry systems in Benin. Indilinga, 6(2): 196-209. doi.org/10.4314/indilinga.v6i2.26428.
Maiti, R., Rodriguez, H.G, Sarkar, N.C. and Ashok, K.T.(2015). Branching Pattern and Leaf Crown Architecture of Some Tree and Shrubs in Northeast Mexico. Int. J. Bio-res. Stress Manag., 6(1):41-50. doi: 10.5958/0976-4038.2015.00009.3.
DOI: http://dx.doi.org/10.52155/ijpsat.v36.1.4864
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Romaric Vihotogbé
This work is licensed under a Creative Commons Attribution 4.0 International License.