Effets De La Co-Inoculation Des Champignons Mycorhiziens Et Rhizobiums Sur Les Performances Agronomiques De Deux Variétés De Soja (Glycine Max L.) A l’Ouest Cameroun : Cas De l’Arrondissement De Dschang

Jean-Paul KAMSEU MOGO, Marcien KUETE FOGANG, Dalisiane Elodie NJEUMEN NKAYEM, Laure Lysette CHIMI NKOMBO, Emmanuelle Fanny GA’AMGNE OUAMBO, Irène LAKEU MELI, Ariane NJIONJI TANKEU, Ange Gabriel KAMDEM TEGUIA

Abstract


The present study investigated the co-inoculation of mycorrhizal and rhizobial fungi with the objective of analyzing its effect on the agronomic performance of two soybean varieties (Glycine max L). The analysis of the soil pH was 5.7, largely around the standard of soil acidity of legumes. The application of the treatments on soybean varieties showed a significant effect (P<0.05) on several parameters, namely plant height, number of pods/plant with 3 and 2 seeds, number of nodules, dry weight of nodules, biomass, total nitrogen, phosphorus and chlorophyll. Indeed, the rhizobium and rhizobium+mycorrhiza treatment presents a chlorophyll level of 42.04±3.79 mg/g and 31.16±9.23mg/g compared to the control which is 23.32±5.8 mg/g and 11.89±3.60mg/g respectively for TGX 1834-5E and SC SAGA varieties On the other hand, the interdependence between varieties and treatments, as well as the application of treatments on the two soybean varieties had no significant effect (P>0.05) on the number of leaves as well as on the number of pods/plant at 4 seeds and 0 seeds compared to the controls in both varieties. In addition, the application of the treatments on both soybean varieties shows that they have a significant effect (P<0.05) on yield in tons per hectare at the variety level and between varieties. The rhizobium+mycorrhiza treatment showed the best pod yield for the varietyTGX 1834-5E of 2.02±0.03T/ha versus1.85±0.04T/ha for the variety SC SAGA.


Keywords


Co-inoculation, champignons, mycorhize, rhizobium, soja, sol.

Full Text:

PDF

References


. Mehmet, O. Z. (2008). Nitrogen rate and plant population effects on yield and yield components in soybean. African Journal of Biotechnology, 7(24).

. Baboy L.L., Kidinda K.L., Kilumba K.M., Langanu S., Mazinga M., Tshipama D., &Kimuni L., (2015). Influence du semis tardif sur la croissance et le rendement du soja (Glycine max Merril) cultivé sous différents écartements à Lubumbashi, RD Congo [Influence of late sowing on growth and yield of Soybean (Glycine max Merril) grown under different spaces in Lubumbashi, DR Congo]. International Journal of Innovation and Applied Studies, 12(1), 104.

. Kananji, G. A. D., Yohane, E., Siyeni, D., Mtambo, L., Kachulu, L., Chisama, B. F., & Mulekano, O. (2013). Guide to soybean production in Malawi. Department of Agricultural Research Services (DARS), Lilongwe, Malawi.

. Akinnifesi, F. K., Ajayi, O. C., Sileshi, G., Chirwa, P. W., & Chianu, J. (2010). Fertiliser trees for sustainable food security in the maize-based production systems of East and Southern Africa. A review. Agronomy for sustainable development, 30(3), 615-629.

. Rienke Nienwenhius, (2005). La culture du soja et d’autres légumineuses, Wagenigen, Ray Bin.

. Jama, B., Palm, C. A., Buresh, R. J., Niang, A., Gachengo, C., Nziguheba, G., & Amadalo, B. (2000). Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: a review. Agroforestry systems, 49(2), 201-221.

. Roughley, R. J. (1976). Production of high quality inoculants and their contribution to legume yield. International Biological Programme.

. Berchie, J. N., Sarkodie-Addo, J., Adu-Dapaah, H., Agyemang, A., Addy, S., Asare, E., & Donkor, J. (2010). Yield evaluation of three early maturing bambara groundnut (Vigna subterranea L. Verdc) landraces at the CSIR-Crops Research Institute, Fumesua-Kumasi, Ghana. Journal of Agronomy, 9(4), 175-179.

. Ngakou, A., Ngo Nkot, L., Doloum, G., & Adamou, S. (2012). Mycorrhiza-Rhizobium-Vigna subterranea dual symbiosis: impact of microbial symbionts for growth and sustainable yield improvement. International Journal of Agriculture and Biology, 14(6): 915-921.

. Devani, M. B., Shishoo, C. J., Shah, S. A., & Suhagia, B. N. (1989). Spectrophotometric method for microdetermination of nitrogen in kjeldahl digest. Journal of the Association of Official Analytical Chemists, 72(6), 953-956.

. Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36.

. McGonigle, T. P., & Fitter, A. H. (1990). Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycological research, 94(1), 120-122.

. Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with mycorrhizas in forestry and agriculture (Vol. 34, p. 35). Canberra: Australian Centre for International Agricultural Research.

. Beuerlin J.E. (1997). Soybean Inoculation and Nitrogen Nutrition. Agronomc crops Team on-Farm Research Projects. Special Circular, 160-98. 2p.

. Pauwels, J. M., Van Ranst, E., Verloo, M., & Mvondo Ze, A. (1992). Manuel de laboratoire de pedologie: methodes d'analyses de sols et de plantes, equipement, gestion de stocks de verrerie et de produits chimiques.

. Graham P.H, Vance C.P., (2000). Nitrogen fixation in perspective an overview of research and extension needs. Field Crops Res 65: 93-106.

. Neila, A., Adnane, B., Mustapha, F., Manel, B., Imen, H., Boulbaba, L., Cherki, G., & Bouaziz, S., (2014). Phaseolus vulgaris- rhizobia symbiosis increases the phosphorus uptake and symbiotic N2 fixation under insoluble phosphorus. Journal of Plant Nutrition 37, 643-657.

. Amrani, A. (2009). Effet de la double inoculation Rhizobium-Champignons mycorhiziens sur la croissance de la féverole et du haricot nain (Doctoral dissertation, Université d'Oran1-Ahmed Ben Bella).

. Wang, X., Pan, Q., Chen, F., Yan, X., & Liao, H. (2011). Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza, 21(3), 173-181.

. Haro, H., Sanon, K. B., Krasova-Wade, T., Kane, A., N'Doye, I., & Traore, A. S. (2015). Réponse à la double inoculation mycorhizienne et rhizobienne du niébé (variété, KVX396-4-5-2D) cultivé au Burkina Faso. International Journal of Biological and Chemical Sciences, 9(3), 1485-1493.

. Ogou, A., Tchabi, A., Tounou, A. K., Agboka, K., & Sokame, B. M. (2018). Effet de quatre souches de champignons mychoriziens arbusculaires sur Meloidogyne spp., principal nématode parasitaire du soja (Glycine max, L.) au Togo. Journal of Applied Biosciences, 127, 12758-12769.

. Ballo, B., Turquin, L., & N’Gbesso, M. (2018). Effet de l’inoculum bactérien de la souche IRAT–FA 3 de Bradyrhizobium japonicum sur la production de trois variétés de soja en Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 12(6), 2667-2679.

. Shukuru, L. (2012). Réponse de 9 variétés exotiques de soja à l’inoculation par Rhizobium japonicumn sans limitation du phosphore et du potassium à Murhesa (République Démocratique du Congo). Mémoire de fin d’études, UCB/Bukavu, inédit.

. Ndatabayi, M. (2012). Réponse de trois variétés exotiques de Soja (Glycine max) à l’inoculation avec le Rhizobium sans limitation de phosphore et de potassium à Mudaka, territoire de Kabare (République Démocratique du Congo). Mémoire de fin d’études, UCB/Bukavu, inédit.

. Haro, H. (2011). Effet d’inoculums de champignons mycorhiziens arbusculaires sur la productivité du niébé Vigna unguiculata (L.) Walp. Mémoire de DEA, Université de Ouagadougou, 80.

. Haro, H., Sanon, K. B., Diop, I., Kane, A., Dianda, M., Houngnandan, P., ... & Traore, A. (2012). Réponse à l’inoculation mycorhizienne de quatre variétés de niébé [Vigna unguiculata (L.) Walp.] cultivées au Burkina Faso et au Sénégal. International Journal of Biological and Chemical Sciences, 6(5), 2097-2112.

. Aboubacar, K., Ousmane, Z. M., Amadou, H. I., Issaka, S., & Zouberou, A. M. (2013). Effet de la co-inoculation du rhizobium et de mycorhizes sur les performances agronomiques du niébé [Vigna unguiculata (L.) Walp.] au Niger. Journal of applied biosciences, 72, 5846-5854.

. Zaidi A., Khan M.S., Aamil M. (2004) Bioassociative effect of rhizo-spheric microorganisms on growth, yield, and nutrient uptake ofgreengram, J. Plant Nutr. 27, 601–612.

. Xavier, L. J. C., & Germida, J. J. (2002). Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biology and Biochemistry, 34(2), 181-188

. Bagayoko, M., George, E., Römheld, V., & Buerkert, A. (2000). Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. The journal of agricultural science, 135(4), 399-407.

. Salih, S. H., Hamd, S. A. M., & Dagash, Y. M. I. (2015). The effects of rhizobium, mycorrhizal inoculations and diammonium phosphate (DAP) on nodulation, growth, and yield of soybean. Universal Journal of Agricultural Research, 3(1), 11-14.

. Safapour, M., Ardakani, M., Khaghani, S., Rejali, F., Zargari, K., Changizi, M., & Teimuri, M. (2011). Response of yield and yield components of three red bean (Phaseolus vulgaris L.) genotypes to co-inoculation with Glomus intraradices and Rhizobium phaseoli. Am. Eurasian. J. Agric. Environ. Sci, 11, 398-405.




DOI: http://dx.doi.org/10.52155/ijpsat.v26.2.3070

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jean-Paul KAMSEU MOGO

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.