Assessment of Banded Iron Formations around Gouap Area as Potential High-Grade Iron Ore (Nyong Serie, Congo Craton - South Cameroon)

Ndema Mbongué Jean-Lavenir, Mbonjoh Terence Manachi

Abstract


The Gouap area is found in the southern part of Cameroon and belongs to the Nyong Series situated NW corner of the Ntem Complex. The assessment of banded iron formations (BIFs) in this area is carried out through rock sampling survey. Samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) combined with instrumental neutron activation analysis (INAA) technologies to completely characterize the rocks. The studied banded iron formations show microband texture and granoblastic microstructure.The mineral assemblage indicates that they undergone the metamorphism of greenschist facies conditions. The chemical composition of the Gouap iron formations shows that the major components (99.43%) that are Fe2O3 and SiO2 indicate the purity of the chemical precipitates. The Gouap iron deposits fall into the group of oxide facies with magnetite as dominant mineral and the most diagnostic fingerprints of the source metals are Ni, Cr and Cu.The Gouap iron deposit displays some light terrigenous input in its geochemistry implying that it belongs to the Algoma- type and indicates that iron formations were deposited in an environment devoid of siliciclastic detrital input.The Gouap BIFs derived from Precambrian mature quartz arenite and Fe-sand that were deposited in an Oceanic Island-arc Margin (ARC) setting under oxic conditions with slow sedimentation accompanied with minor input of anoxic conditions with fast sedimentation. This constitutes a new result for de iron deposits in Cameroon.The overall data of Gouap iron deposits pointing to hydrothermal and Red Sea hydrothermal deposits (RS). They exhibit Low- temperature hydrothermal fluids (< 0.1%) and Seawater, indicating that mixing of seawater and less amount (< 0.1%) of low-temperature hydrothermal fluids (< 200°C) might have occurred during their deposition. Some samples have values that reflect between 1 to 5% of a high-temperature hydrothermal fluid input suggesting that the Gouap iron formations were deposited close to the distal position.The high concentration of Fe2O3(T) in the Gouap iron deposit (average = 63.73 wt%) shows that it has a very interesting potential for exploitation and this iron contents can be classified as high- grade or medium- grade iron ores by global standards, and it fall within the acceptable levels for commercial ores. Gouap BIFs host high- grade siliceous ore with magnetite being the predominant mineral. This also constitutes a new result for the iron deposit in Cameroon.


Keywords


Gouap area, microband texture, Precambrian, distal position, high- grade siliceous ore.

Full Text:

PDF

References


Klein, C. Some Precambrian banded-iron formation (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry and origin. Am. Miner. 2005; 90, 1473–1499.

Bekker, A., Slack, J.F., Planavsky, N., Krapež, B., Hofmann, A., Konhauser, K.O., and Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes: Economic Geology and the Bulletin of the Society of Economic Geologists. 2010; 105: 467–508, doi:10.2113/gsecongeo.105.3.467.

Basta. F.F., Maurice. A.E. Fontboté. L. Favarger. P.Y. Petrography and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab. Eastern Desert. Egypt: Implications for the origin of Neoproterozoic BIF. Precambrian Research. 2011; 187: 277-292

Klein, C. and Beukes, N.J. Time Distribution, Stratigraphy, and Sedimentlogical Setting, and Geochemistry of Precambrian Iron Formation. In: Schopf, J.W., Klein, C. (Eds.), the Proterozoic Biosphere: a Multidisciplinary Study. Cambridge University Press, New York. 1992; 139–146.

Lowe, D.R., Tice, M.M. Tectonic controls on atmospheric, climatic, and biological evolution 3.5–2.4 Ga. Precambrain Res. 2007; 158: 177–197.

Haugaard, R., Frei, R., Stendal, H., Konhauser, K. Petrology and geochemistry of the ∼2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland: source characteristics and depositional environment. Precambrian Res. 2013; 229: 150–176.

Taylor, S.R., McLennan, S.M. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos. Trans. R. Soc. Lond. 1981; 301: 381–399.

Eriksson, P., Martins-Neto, M.A., Nelson, D.R., Aspler, L.B., Chiaranzelli, J.R., Catuneanu, O., Sakar, S., Altermann, W., Rautenbach, C.J. An introduction to Precambrian basins: their characteristics and genesis. Sediment. Geol. 2001; 141:142, 1–35.

Barley, M., Bekker, A., Krapez, B. Late Archean to early paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 2005; 238: 156–171.

Viehmann, S., Bau, M., Smith, A.J.B., Beukes, N.J., Dantas, E.L., and Bühn, B. The reliability of ~2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics: Journal of African Earth Sciences. 2015; 111: 322–334, doi:10.1016/j.jafrearsci.2015.08.013.

Konhauser, K.O., Hamade, T., Raiswell, R., Morris, R.C., Ferris, F.G., Southam, G., and Canfeld, D.E. Could bacteria have formed the Precambrian banded iron formations?: Geology. 2002; 30: 1079–1082, doi:10.1130/0091- 7613(2002)030<1079:CBHFTP>2.0.CO;2.

Robb, L. Introduction to Ore-forming Processes. Blackwell publishing. 2005; 373 pp.

Konhauser, K.O., Pecoits, E., Lalonde, S.V., Papineau, D., Nisbet, E.G., Barley, M.E., Arndt, N.T., Zahnle, K., Kamber, B.S. Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature. 2009; 458:750–753.

Bontognali, T.R.R., Fischer, W.W., Föllmi, K.B. Siliciclastic associated banded iron formation from the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Prec. Res. 2013; 226: 116–124.

Beukes, N.J., and Gutzmer, J. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary: Reviews in Economic Geology. 2008; 15: 5–47.

Isley, A. E. and Abbott, D. H. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. 1999; 104:15461–15477.

Bekker, A., Holland, H. D., Wang, P. L., Rumble, I. I. I., Stein, H. J., Hannah, J. L., Coetzee, L. L. and Beukes, N. J. Dating the rise of atmospheric oxygen. Nature. 2004; 427: 117–120.

Mukhopadhyay, J., Crowley, Q. G., Ghosh, S., Ghosh, G., Chakrabarti, K., Misra, B., Heron, K. and Bose, S. Oxygenation of the Archean atmosphere: New paleosol constraints from eastern India. Geology. 2014; 42: 923–926.

Canfield, D.E., A new model for Proterozoic ocean chemistry. Nature. 1998; 396: 450–453.

Kump, L. R. and Seyfried, W. E. Jr. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 2005; 235: 654–662.

Fairchild, I. J. and Kennedy, M. J. Neoproterozoic glaciation in the Earth system. J. Geol. Soc. London. 2007; 164: 895–921.

Rasmussen, B., Fletcher, I. R., Bekker, A., Muhling, J. R., Gregory, C. J. and Thorne, A. M. Deposition of 1.88-billion-yearold iron formations as a consequence of rapid crustal growth. Nature. 2012; 484: 498–501.

Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans. Prince-ton University Press, Princeton. 1984; 582 p.

Trendall, A. F. The significance of iron-formation in the Precambrian stratigraphic record. In Altermann, W., Corcoran, P. L. (eds.) Precambrian Sedimentary Environments: A Modern Approach to Depositional Systems, volume. 33. International Association of Sedimentologists Special Publication, Blackwell, Oxford. 2002; 33–66.

Huston, D.L., Logan, G.A. Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere,” Earth Planet. Sci. Lett. 2004; 220: 41– 55.

Frei, R., Dahl, P. S., Duke, E. F., Frei, K. M., Hansen, T. R., Frandsson, M. M. and Jensen, L. A. Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota USA): assessment of chemical change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise of atmospheric oxygen. Prec. Res. 2008; 162: 441–474.

Holland, H.D. Sedimentary mineral deposits and the evolution of Earth’s nearsurface environments: Economic Geology and the Bulletin of the Society of Economic Geologists. 2005; 100: 1489–1509, doi:10.2113/gsecongeo .100.8.1489.

Cloud Jr., P.E. Atmospheric and hydrospheric evolution on the primitive earth: both secular accretion and biological and geochemical processes have affected earth's volatile envelope. Science. 1968; 160: 729–736.

Holland, H.D. Ocean-possible source of iron in iron formations. Economic Geology. 1973; 68: 1169-1172. doi:10.2113/gsecongeo.68.7.1169

Bekker, A., Planavsky, N.J., Krape, B., et al., Iron formations: their origins and implications for ancient seawater chemistry, in Treatise on GHeochemiostry. Second ed. Vol. 9: Sediments, Diagenesis, and Sedimentary rocks, Amsterdam: Elsevier. 2014; pp. 561-628.

Bau, M., Möller, P. Rare earth element systematics of the chemicallyprecipitated component in Early Precambrian iron-formations and theevolution of the terrestrial atmosphere–hydrosphere–lithosphere system.Geochim. Cosmochim. Acta. 1993; 57: 2239–2249.

Hamade, T., Konhauser, K.O., Raiswell, R., Goldsmith, S., Morris, R.C. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology. 2003; 31: 35–38.

Hagemann, S. G., Angerer, T., Duuring, P., Rosiere, C. A., Figueiredo e Silva, R. C., Lobato, L., Hensler, A. S. and Walde, D. H. G. BIF-hosted iron mineral system: A review. Ore Geol. Rev. 2016; 76: 317–359.

Beukes, N. J., Gutzmer, J. and Mukhopadhyay, J. The Geology and Genesis of High-Grade Hematite Iron Ore Deposits. In Proceedings of Iron Ore. 2002; 23–29.

Spier, C. A., de Oliveira, S. M. B., Sial, A. N., Rosière, C. A. and Ardisson, J. D. Mineralogy and trace-element geochemistry of the high-grade iron ores of the Aguas Claras mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil. Miner. Deposita. 2008 ; 43: 229–254.

Rosière, C. A. and Rios, F. J. The origin of hematite in high grade iron ores based on infrared microscopy and fluid inclusion studies: The example of the Conceição mine, Quadrilátero Ferrífero, Brazil. Econ. Geol. 2004; 99: 611–624.

Suh, C. E., Cabral, A., Shemang, E. M., Mbinkar, L. and Mboudou, G. G. M. Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameroon, West Africa. Explor. Min. Geol. 2008; 17: 197–207.

Suh, C.E., Cabral, A.R., Ndime, E. Geology and ore fabric of the Nkout high-grade haematite deposit, southern Cameroon. In: Proceedings of the 10th Biennal of Smart Science for Exploration and Mining. 2009; pp. 558–560.

Nforba, M.T., Kabeyene, K.V., Suh, C.E. Regolith geochemistry and mineralogy of the Mbalam itabirite-hosted iron ore district, southeastern Cameroon. Open J. Geol. 2011; 1: 17–36.

Chombong N.N., Suh C.E. 2883 Ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics. Episodes. 2013; 36: 47-57.

Ndime, E.N., Ganno, S., Soh Tamehe, L., Nzenti, J.P. Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. J. Afr. Earth Sci. 2018; 148.

Ganno, S, D. Tsozué, Gus Djibril K. N, Milan S .Tchouatcha, Timoléon Ngnotué, Ruth G. Takam and J.P, Nzenti. Geochemical constraints of iron from the Archaen Ntem Complex (Congo Craton) in the Meyomessi Area, Southern Cameroon. Resource Geology. 2018; DOI: 10.1111/rge. 12172

Ilouga, D.C.I., Suh, C.E., Ghogomu, R.T. Textures and rare earth elements composition of banded iron formations (BIF) at Njweng, Mbalam iron ore district, southern Cameroon. Int. J. Geosci. 2013; 4: 146–165.

Tessontsap Teutsong, Tomaso, R.R., Bontognali, Ndjigui, P.D., Vrijmoed, Teagle, D., Cooper, M., Vance, D. Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), southern Cameroon: implications for its origin. Ore Geol. 2017; 80: 267–388.

Ganno, S., Ngnotue, T., Kouankap, N. G. D., Nzenti, J. P. and Notsa, F. M. Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, southern Cameroon: Implications for the origin and depositional environment. Chem. Erde-Geochem. 2015a; 75: 375–387.

Ganno, S., Moudioh, C., Nzina Nchare, A., Kouankap Nono, G. D. and Nzenti, J. P. Geochemical fingerprint and iron ore potential of the siliceous itabirite from Palaeoproterozoic Nyong series, Zambi area, southwestern Cameroon. Resour. Geol. 2015b; 66: 71–80.

Ganno, S., Njiosseu, T. E. L., Kouankap, N. G. D., Djoukouo, S. A. P., Moudioh, C., Ngnotué, T. and Nzenti, J. P. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, southwestern Cameroon: Constraints from petrography and geochemistry. Ore Geol. Rev. 2017; 80: 860–875.

Soh Tamehe, L., Nzepang, T.M., Chongtao, W., Ganno, S., Ngnotue, T., Kouankap, N.G.D., Simon, S.J., Zhang, J., Nzenti, J.P. Geology and geochemical constrains on the origin and depositional setting of the Kpwa–Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon. Ore Geol. Rev. 2018; 95: 620–638.

Sikaping, S. Métamorphisme et minéralisations associées du secteur de Gouap–Nkolo (Région du Sud) Unpublished Master thesis. University of Yaounde. 2012 ; pp. 77.

Soh, L Tamehe, W. Chongtaoa, S. Ganno, J.S. Shaamu, G.D.Kouankap Nono, J.P. Nzenti, Y.B. Lemdjoue, L. Naing Htun. Geology of the Gouap iron deposit, Congo craton, southern Cameroon: Implications for iron ore exploration,” Geology Reviews. 2019; 107: 1097–1128, https://doi.org/10.1016/j.oregeorev.2019.03.034

Ndema Mbongué, J.L., Luku, O. Inyogen. Geology and geochemistry of Messondo banded iron formation-hosted iron ore from the northwestern Congo Craton, southern Cameroon: implication for iron ore deposits. GSJ. 2020; 8(2): 4684-4699.

Nzepang Tankwa, M., Ganno, S., Olngbenga Akindeji Okunlola., Tanko Njiosseu, E.L., Soh Tamehe L., Kamguia Woguia, B., Motto Mbita, A.S., & Nzenti, J.P. Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology, International Geology Review. 2020; DOI: 10.1080/00206814.2020.1793423

Moudioh, C., Soh Tamehe, L., Ganno, Sylvestre., Nzepang Tankwa, M., Soares, M.B., Ghosh, R.. Kankeu, Boniface. Nzenti J.P. Tectonic setting of the Bipindi greenstone belt, northwest Congo craton, Cameroon: Implications on BIF deposition. Journal of African Earth Sciences 2020; 171: 103971.

Ilouga D. C. I., Ndong Bidzang F., Ziem A Bidias L. A., Olinga J. B., Tata E., Minyem D Geochemical Characterization of a Stratigraphic Log Bearing Iron Ore in the Sanaga Prospect, Upper Nyong Unit of Ntem Complex, Cameroon. Journal of Geosciences and Geomatics. 2017; 5(5): 218-228. DOI:10.12691/jgg-5-5-1

Mbang Bonda, B. M., Etame, J., Kouske, A. P., Bayiga, E. C., Ngon Ngon, G. F., Mbaï, S. J. Gérard, M. Ore Texture, Mineralogy and Whole Rock Geochemistry of the Iron Mineralization from Edea North Area, Nyong Complex, Southern Cameroon: Implication for Origin and Enrichment Process. International Journal of Geosciences. 2017; 8: 659-677. https://doi.org/10.4236/ijg.2017.85036

Ndema Mbongué, J.L and Aroke E. Alemnju. Petrology and Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Mineralization from the Paleoproterozoic Nyong Serie (Congo Craton, South Cameroon), Pout Njouma Area (Edea North): Evidence for Iron Ore Deposits. International Journal of Research and Innovative in Applied Science (IJRIAS). 2020; 5(8): 55-72.

Nkoumbou, C. Fuh Calistus, Jacqueline Tchakounte Numbem a, Yolande Vanessa Belle Ekwe Lobe´, Christin Steve Nwagoum Keyamfe Petrology and geochemistry of REE-rich Mafe´ banded ironformations (Bafia group, Cameroon). Comptes Rendus Geoscience. 2017; 349: 165–174.

Nzenti JP, Barbey P, Macaudiere J and Soba D. Origin and evolution of the late Precambrian high-grade Yaounde gneisses (Cameroon). Prec Res. 38:91-109.

Toteu S.F., Van Schmus W.R., Penaye J., Nyobé J.B. (1994). U-Pb and Sm-Nd evidence for Eburnean and Pan-African highgrade metamorphism in cratonic rocks of southern Cameroon, Precamb. Res. 1988; 67: 321-347.

Tchameni, R., Mezger, K., Nsifa, N. E. and Pouclet, A. Crustal origin of early Proterozoic syenites in the Congo Craton (Ntem complex), South Cameroon. Lithos. 2001; 57: 23–42.

Shang, C. K., Liégeois, J. P., Satir, M., Frisch, W. and Nsifa, E. N. Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo craton, southern Cameroon: Evidence for Pb-loss due to nonmetamorphic causes. Gondwana Res. 2010; 18: 337–355.

Ndema Mbongué JL, Nzenti JP, Cheo E.S. Origin and evolution of the formation of the Nyong serie in the Western Border of the Congo Craton. J Geosci Geom. 2014; 2(2): 62-75.

Ndema Mbongué Jean Lavenir, Sigué Cyrille, Nzenti Jean Paul, and Cheo Emmanuel Suh. Structural Characterization of Outcrop-Scale in Edea and Eseka Area: Evidence for a Complex Polyphase Deformation in the Paleoproterozoic Nyong Serie (Congo craton-South Cameroon). IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG). 2019; 7(5): 01-09.

Nsifa, N. E., Tchameni, R., Nédélec, A., Siqueira, R., Pouclet, A., Bascou, J. Structure and petrology of Pan-African nepheline syenites from the South West Cameroon; Implications for their emplacement mode, petrogenesis and geodynamic significance. Journal of African Earth Sciences. 2013; 87: 44–58.

Maurizot P, Abessolo A, Feybesse JL, Johan V, Lecomte P. Etude et prospection miniere du Sud-Ouest Cameroun. Synthese des travaux de 1978 à 1985. Rapport BRGM. 1986 ; 85 CMR 066.

Delhal, J. et Ledent, D. Musée Royal Afrique Centrale. Tervuren. Rapport. Annuel. 1974 ; pp. 71-76.

Lasserre M, and Soba D. Age liberien des granodiorites et des gneiss a pyroxenes du Cameroun meridional. Bulletin du BRGM. 1976; 2: 17–32.

Lerouge C, Cocherie A, Toteu S.F., Penaye J., Milési J.P., Tchameni R., Nsifa E.N., Fanning C.M., Doloule E. Shrimps UPb zircon age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, SouthWestern Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sci. 2006; 44: 413-427.

Pouclet A, Tcahameni R, Mezger K, Vidal M, Nsifa EN, Shang C and Penaye J. Archaean crustal accretion at the Northern border of Congo Craton (South Cameroon): The charnockite-TTG ling. Bull. Soc. Géol. France. 2007; 178: 331-342.

Ebah Abeng, S.A.E., Ndjigui, P.D., Beyanu, A.A., Teutsong, T., Bilong. P. Geochemistry of pyroxenites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo Craton): Implications for Au-PGE exploration. Journal of Geochem. Expl. 2012; 114: 1-19.

Siivola, J. and Schmid, R. List of Mineral Abbreviations. Recommen-dations by the IUGS Subcommission on the Systematics of Metamor-phic Rocks 2007; Web version 01.02.2007; www.bgs.ac.uk.scmr/home.html

Actlabs. Schedule of Services and Fees, Geochemistry – International. 2019.

Ewers, W.E., Morris, R.C. Studies of the Dales George member of the Brockman Iron Formation, Western Australia. Econ. Geol. 1981; 76: 1929–1953.

Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins, in: Hawkesworth C.J and Norry M.J (eds), Continental baslts and mantle xenoliths, Shiva, Nantwich. 1983; p. 230-249.

Dymek, R.F., Klein, C. Chemistry, petrology and origin of banded iron formation lithologies from 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Res. 1988; 39: 247–302.

Arora, M., Govil, P.K., Charan, S.N., Uday Raj, B., Balaram, V., Manikyamba, C., Chatterjee, A.K., Naqvi, S.M. Geochemistry and origin of Archean banded iron–formation from the Bababudan Schist Belt, India. Econ. Geol. 1995; 90: 2040–2057.

Gross G. A. and Macleod, C. R. A Preliminary Assessment of the Chemical Composition of Iron-Formations in Canada. Canadian Mineralogist. 1980; 18: 223-229.

Gross, G. A. “Geochemistry of Iron-Formation in Canada,” In: J.-J. Chauvel, C. Yugi, E. M. El-Shazly, G. A. Gross, K. Laajoki, M. S. Markov, K. L. Rai, V. A. Stulchikov and S. S. Augustithis Eds., Ancient Banded iron Formations (Regional Representations), Theophrastus, Athens. 1990; pp. 3-26.

Adekoya, A.J.,Okonkwo, C.T. andAdepoju,M.O. Geochemistry of Muro Banded Iron Formation, Central Nigeria. Int. J. Geosci. 2012; 3:1074–1083.

Sciuba M. Mineralogy and Geochemistry of the Banded Iron-Formation in the Svartliden Gold Deposit, Northern Sweden. 2013.

Stanton, R.LOre petrology. London and New York (McGraw-Hill Book Co.). 1972; Xviii + 713pp. 242 figs.

Alibert, C., McCulloch, M.T. Rare earth element and Nd isotopic compositions of the BIFs and associated shales from Hamersley, Western Australia. Geochimica et Cosmochimica. Acta. 1993; 57: 187–204.

Bau, M., Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron Formation, Transvaal Supergroup, South Africa. Precambrian Research. 1996; 79; 37–55.

Akagi, T. and Masuda, A. A simple thermodynamic interpretation of Ce anaomaly. Chemical Journal. 1998; 35(5): 301-314.

Taylor, S. R. and McLennan, S. M. The continental crust: its composition and evolution. Blackwell Publishing, Oxford, UK. 1985; p. 312.

Chombong, N.N., Suh, C.E., Lehmann, B., Vishiti, A., Ilouga, D.C., Shemang, E.M., Tantoh, B.S., Kedia, A.C. Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Appl. Earth Sci. 2017; http://dx.doi.org/10.1080/03717453.2017.1345507.

Anderson, K.F.E., Frances, W., Rollinson, G.K., Charles, J.M. Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon. Ore Geol. Rev. 2014; 62: 25–39.

Manikyamba, C., Balaram, V., and Naqvi, S.M. Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaean Sandur greenstone belt (schist belt) Karnataka nucleus, India, Precambrian Research. 1993; 61: 137-164.

Gnaneswar Rao, T., Naqvi, S.M. Geochemistry, depositional environment and tectonic setting of the BIF of late Archaean setting of the BIF of late Archaean Chitradurga schist belt, India. Chemical Geology. 1995; 121: 217–243.

Klein, C., and Ladeira, E.A. Geochemistry and Petrology of some Proterozoic BIF of the Quadrilatero Ferrifero, Minas Gerais, Brazil, Economic Geology. 2000; 95: 405-428.

Rollinson, H.R. Using geochemical data: evaluation, presentation, interpretation, Pearson edition. 1993 ; 352 p.

Bonnot-Courtois. C. Distribution des terres rares dans les dépôts hydrothermaux de la zone Famous et des Galapagos – Comparaison avec les sédiments métallifères. Marine Geology. 1981 ; 39: 1-14.

James, H.J. Sedimentary Facies of Iron Formation. Economic Geology. 1954; 49: 235-293. https://doi.org/10.2113/gsecongeo.49.3.235

James H.L. Chemistry of the iron-rich sedimentary rocks, In: Fleischer M. (ed.), Data of Geochemistry’, 6th edition, Paper 440-W, U.S. Govt. Printing Office, Washington D.C. 1966.

James, H.L. Precambrian iron-formations: Nature, origin, and mineralogic evolution from sedimentation to metamorphism. In: Wolf, K.H., Chilingarian, G.V. (Eds.), Diagenesis III: Developments in Sedimentology. 1992; 47: 543–589.

Cox, R., Lowe, D.R., Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the south-western United States. Geochim. Cosmochim. Acta. 1995; 59: 2919–2940.

Girty, G.H., Ridge, D.L., Knaack, C., Johnson, D., Al-Riyami, R.K. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J. Sediment. Res. 1996; 66: 107–118.

] Herron, M.M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Petrol. 58, 820–829.

Floyd, P.A., Winchester, J.A., Park, R.G. Geochemistry and tectonic setting of lewisian clastic metasediments from the early proterozoic loch maree group of gairloch. N.W. Scotland. Precambrian Res. 1989; 45 (1–3): 203–214.

Govett, G.J.S. Origin of Banded Iron-Formation. Geological Society of America Bulletin 1966; 77: 1191-1212.

Lepp, H. and Goldich, S.S. Origin of the Precambrian Iron-Formation. Economic Geology. 1964; 59:1025-1060. https://doi.org/10.2113/gsecongeo.59.6.1025

Roser, B.P., Korsch, R.J. Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol. 1986; 94: 635–650.

Wright, J., Schrader, H. and Holser, W. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta. 1987; 51: 631–644.

Isley, A.E. Hydrothermal plumes and the delivery of iron to banded iron formations. Journal of Geology. 1995; 103: 169-185. doi:10.1086/629734

Frei, R., Polat, A. Source heterogeneity for the major components of 3.7 Ga banded iron formation (Isua Greenstone Belt, western Greenland): tracing the nature of interacting water masses in BIF formation. Earth Planet. Sci. Lett. 2007; 253: 266–281.

Belevtsev, Y. N., Belevtsev, R. Y. and Siroshtan, R. I. The Krivoy Rog Basin. In Trendall, A. F., Morris, R. C. (eds.) Ironformation: Facts and Problems. Elsevier, Amsterdam. 1982; 211–252.

Cloud, P. Paleoecological significance of banded iron-formation. Economic Geology. 1973; 68; 1135−1143.

Bonatti, E. Metallogenesis at oceanic spreading centers. Annu. Rev. Earth and Planet. Sci. 1975; 3: 401–433.

Toth, J.R. Deposition of submarine crusts rich in manganese and iron. GSA Bull. 1980; 91 (1): 44–54.

Marchig, V., Gundlach, H., Möller, P., Schley, F. Some geochemical indicatorsfor discrimination between diagenetic and hydrothermal metalliferoussediments. Mar. Geol. 1982; 50: 241–256.

Lan, T.G., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Liu, Y.S. U-Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province: constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geol. Rev. 2014; 56: 472–486.

Barrett, T.J. Chemistry and mineralogy of Jurassic bedded chert overlyingophiolites in the North Appenines, Italy. Chem. Geol. 1981; 34: 289–317.

Danielson, A., Moller, P., Dulski, P. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem. Geol. 1992; 97: 89–100.

Bau, M., Dulski, P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during nearvent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 1999; 155: 77–90.

Alexander, B.W., Bau, M., Andersson, P., Dulski, P. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim. Cosmochim. Acta. 2008; 72: 378–394.

Gourcerol, B., Thurston, P.C., Kontak, D.J., Côté-Mantha, O., and Biczok, J. Depositional setting of Algoma-type banded iron formation: Precambrian Research. 2016; 281: p. 47–79. 10.1016/j.precamres.2016,04.019

Thurston, P.C., Kamber, B.S., Whitehouse, M. Archean cherts in banded iron formation: insight into Neoarchean ocean chemistry and depositional processes. Precambr. Res. 2012; 214–215, 227–257.

Alibo, D.S., Nozaki, Y. Rare earth elements in seawater: particle association, shale normalization, and Ce oxidation. Geochimica et Cosmochimica Acta. 1999; 63: 363–372.

Angerer, T., Hagemann, S. G. and Danyushevsky, L. V. Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia. Econ. Geol. 2012; 107: 599–644.

Belevtsev, Y. N., Kravchenko, V. M., Kulik, D. A., Belevtsev, R. Y., Borisenko, V. G., Drozdovskaya, A. A., Epatko, Y. M., Zankevich, B. A., Kalinichenko, O. A., Koval, V. B., Korzhnev, M. N., Kusheyev, V. V., Lazurenko, V. I., Litvinskaya, M. A., Nikolayenko, V. I., Pirogov, B. I., Prozhogin, L. G., Pikovskiy, E. S., Samsonov, V. A., Skvortsov, V. V., Savchenko, L. T., Stebnovskaya, Y. M., Tereshchenko, S. I., Chaykin, S. I. and Yaroshchuk, M. A. (Precambrian banded iron formations of the European part of the USSR. Genesis of iron-ores. Naukova Dumka Press, Kiev, Ukrainia (IGCP UNESCO Project. 1991; No 247 (in Russian)).

Li, H. M., Zhang, Z. J., Li, L. X., Zhang, Z. C., Chen, J. and Yao, T. Types and general characteristics of the BIFrelated iron deposits in China. Ore Geol. Rev. 2014; 57: 264–287.

Guider, J. W. Iron ore beneficiation -key to modern steelmaking. Mineral. Engineering. 1981; 33: 410–413.

Dobbins, M. S. and Burnet, G. Production of an iron ore concentrate from the iron-rich fraction of power plant fly ash. Resour. Conserv. 1982; 9: 231–242.




DOI: http://dx.doi.org/10.52155/ijpsat.v22.2.2101

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Ndema Mbongué Jean-Lavenir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.