Role of Phospholipases A2 as Anti-Covid 19

Mohy El Din Abdel Fattah

Abstract


In this review trial has been made for the search of anti-covid 19, so my idea depends on the choice of phospholipases A2 as anti-covid 19 depending on the following evidences:

 

Phospholipases (PLs) are a ubiquitous group of enzymes that share the property of hydrolyzing a common substrate, phospholipid. Nearly all share another property; they are more active on aggregated substrate above the phospholipid's critical micellar concentration (cmc). Phospholipases have low activity on monomeric substrate but become activated when the substrate concentration exceeds the cmc. The phospholipases are diverse in the site of action on the phospholipid molecule, their function and mode of action, and their regulation. The diversity of function suggests that phospholipases are critical to life since the continual remodeling of cellular membranes requires the action of one or more phospholipase. Their functions go beyond their role in membrane homeostasis; they also function in such diverse roles from the digestion of nutrients to the formation of bioactive molecules involved in cell regulation. There are indications that a few phospholipases may carry out a biological function independent of their catalytic activity by binding to a regulatory membrane receptor. Phospholipase-like proteins with toxic properties, yet which lack a functional catalytic site, are found in venoms. It is of interest that most, but not all, phospholipases studied in detail thus far are soluble proteins. The soluble nature of many phospholipases suggests that their interaction with cellular membranes is one of the regulatory mechanisms that exist to prevent membrane degradation or to precisely control the formation of phospholipid-derived signaling molecules. The classification of the phospholipases based on their site of attack. The phospholipases A (PLAs) are acyl hydrolases classified according to their hydrolysis of the l-acyl ester (PLAI) or the 2-acyl ester (PLA2). Some phospholipases will hydrolyze both acyl groups and are called phospholipase B. In addition, lysophospholipases remove the remaining acyl groups from monoacyl (lyso) phospholipids. Cleavage of the glycerophosphate bond is catalyzed by phospholipase C (PLC) while the removal of the base group is catalyzed by phospholipase D (PLD). The phospholipases C and D are therefore phosphodiesterases [5].


Keywords


Phospholipases A2,Anti-Covid 19, Covid 19

Full Text:

PDF

References


H. Lu, C.W. Stratton, Y.W. Tang (2020). Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle J Med Virol Google Scholar.

D.S. Hui, I.A. E, T.A. Madani, F. Ntoumi, R. Kock, O. Dar, et al. (2020). The continuing 2019 - n CoV epidemic threat of novel coronaviruses to global health the latest 2019 novel coronavirus outbreak in Wuhan, China Int J Infect Dis, 91, pp. 264-266 Article Download PDF View Record in Scopus Google Scholar.

A.E.A. Gorbalenya, (2020) .Severe acute respiratory syndrome-related coronavirus: the species and its viruses a statement of the Coronavirus Study GroupBio Rxiv , 10.1101/2020.02.07.937862 Google Scholar.

T.K. Burki Corona virus in China Lancet Respir Med (2020).

David C. Witon and Moseley Waite, (2002). Biochemistry of Lipids, Lipoproteins and Membranes, Phospholipases A2 4th edition Chapter 11.

O. G. Berg, M. H. Gelb, M. D. Tsai, M. K. Jain (2001): Interfacial enzymology: The secreted phospholipaseA2-paradigm. Chemical Rev, 101, 2613–2653.

D.A. Six, E.A. Dennis, (2000). The expanding super family of phospholipaseA2 enzymes: classification and characterization. Biochim Biophys Acta Mol Cell BiolLipids, 1488, 1–19.

E. Valentin, G. Lambeau, (2000). Increasing molecular diversity of secreted phospholipasesA2 and their receptors and binding proteins. Biochim Biophys Acta Mol Cell Biol Lipids. 1488, 59–70.

P. Vadas, J.Browning, J.Edelson, W.Pruzanski: Extracellular phospholipase-A2 expression and inflammation the relations hip with associated diseases. J Lipid Mediators. 1993, 8, 1–30.

C.C. Leslie, (1997). Properties and regulation of cytosolic phospholipaseA2. J Biol Chem. 272, 16709–16712.

M. V. Winstead, J. Balsinde, E. A. Dennis (2000). Calcium independent phospholipase A2: structure and function. Biochim Biophys Acta Mol Cell Biol Lipids. 1488, 28–39.

van Meer, G., Voelker, D. R. & Feigenson, G. W., (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–124.

Bigay, J. & Antonny, B., (2012). Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell. 23, 886–895.

Jackson, C. L., Walch, L. & Verbavatz, J.-M, (2016). Lipids and their trafficking: an integral part of cellular organization. Dev. Cell. 39, 139–153

Harrison, S. C., (2013). Principle of Virus Structures in Fields Virology, 6th ed. Vol. 1 (ed. Knipe, D. M. & Howley, P. M.) 52–86 (Lippincott Williams & Wilkins.

Reddy, T. & Sansom, M. S, (2016). The role of the membrane in the structure and biophysical robustness of the dengue virion envelope. Structure. 24, 375–382.

WendtA, Adhoute X, CastellaniP, OulesV, Ansaldi C, et al.(2014) Chronic hepatitis C:future treatment.Clin Pharmacol6:1–17.

RayD, ShiPY (2006) Recentadvances in flavivirus antiviral drug discovery and vaccine development. RecentPatAntiinfectDrugDiscov1:45–55.

BhattS, GethingPW, BradyOJ, MessinaJP, FarlowAW, et al. (2013)The global distribution and burden of dengue.Nature496:504–507.

Hales S, deWet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empiricalmodel.Lancet360:830–834.

Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev Microbiol62:71–92.

Letson GW, Singhasivanon P, Fernandez E, Abeysinghe N, Amador JJ, et al. (2010) Dengue vaccinetrial guidelines and role of large-scale,postproof-of- concept demonstration projects in bringin gadengue vaccinetouseindengue endemic areas.HumVaccin6:802–809.

Lim SP, Wang Q-Y, Noble CG, ChenY-L, Dong H, etal.(2013) Ten years of dengue drug discovery: Progress and prospects. Antivira Research100:500– 519.

Lindenbach B, Thiel H, Rice C (2007) Flaviviridae: the viruses and their replication. In: Knipe D, Howley P, editors. Fields Virology. 5th ed. Philadelphia: Lippincot Williams &Wilkins.pp.1101–1151.

KINGH (1948) Curareal kaloids; constitution of dextro-tubocurarine chloride. J ChemSoc174:265.

Ganesan A (2008)The impact of natural products up on modern drug discovery. Curr OpinChemBiol12:306–317.

Butler MS (2005) Natural products to drugs: natural product derived compounds in clinical trials. Nat ProdRep22:162–195.

Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep25:475–516.

Bailey P, Wilce J (2001) Venom as a source of use full biologically active molecules. Emerg Med (Fremantle) 13:28–36.

Ferreira SH, Bartelt DC,Greene LJ (1970) Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry9:2583–2593.

Ondetti MA,Williams NJ, Sabo EF, Pluscec J, Weaver ER, et al.(1971). Angiotensin-converting enzyme inhibitors from the venom of Both ropsjararaca. Isolation, elucidation of structure, and synthesis. Biochemistry10:4033–4039.

Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, et al.(1991) Barbourin. AGP II b-IIIa-specificint egrinant agonist from the venom of Sistrurus m.barbouri.JBiolChem266:9359–9362.

Egbertson MS, Chang CT, Duggan ME, Gould RJ, Halczenko W, et al.(1994) Non-peptide fibrinogen receptor antagonists.2.Optimization of atyrosine templateasamimic for Arg-Gly-Asp.J Med Chem37:2537–2551.

Petricevich VL, Mendonc¸ a RZ (2003). Inhibitory potential of Crotalusdurissus terrificus venom on measles virus growth. Toxicon42:143–153.

Borkow G, Ovadia M (1999) Selectivelysis of virus-infected cells by cobrasnake cytotoxins:Asendai virus, human erythrocytes, and cytotoxin model. Biochem Biophys ResCommun264:63–68.

Zhang XG, Mason PW, Dubovi EJ, XuX, Bourne N, et al.(2009) Antiviral activity of geneticin against dengue virus. Antiviral Res83:21–27.

Muller VD, Russo RR, Cintra AC, Sartim MA, Alves-Paiva ReM, etal.(2012). Crotoxin and phospholipases A2 from Crotalusdurissuster rificus showed antiviral activity against dengue and yellow fever viruses.Toxicon59:507–515.

Fenard D, Lambeau G, Valentin E, Lefebvre JC, Lazdunski M,et al.(1999) Secreted phospholipases A(2), a new class of HIV inhibitors that block virus entry into host cells. JClinInvest104:611–618.

J.E. Fletcher A HSS, C. LOwn by, (1997). Molecular events in the myotoxicaction of phospholipases. In: Kini RM, editor. Venom phospholipase A2enzymes: structure, function, and mechanism. Chichester; NewYork: JohnWiley.pp.xii, 511 p.

Furukawa Y, Matsunaga Y, Hayashi K (1976). Purification and Characterization of a Coagulant Protein from Venom of Russells Viper. Biochimica Et Biophysica Acta 453:48–61.

Huang HC, Lee CY (1984). Isolation and Pharmacological Properties of Phospholipases A2 from Vipera-Russelli (Russell Viper) Snake-Venom. Toxicon 22: 207–217.

Vishwanath BS, Kini RM, Gowda TV (1988) Purification and Partial Biochemical-Characterization of an Edema Inducing Phospholipase-A2 from Vipera-Russelli (Russells Viper) Snake-Venom. Toxicon 26: 713–720.

Thwin MM, Gopalakrishnakone P, Yuen R, Tan CH (1995). A Major Lethal Factor of the Venom of Burmese Russells Viper (Daboia-Russelli-Siamensis) - Isolation, N-Terminal Sequencing and Biological-Activities of Daboiatoxin. Toxicon 33: 63–76.

Mukherjee AK, Ghosal SK, Maity CR (1997). Lysosomal membrane stabilization by alpha tocopherol against the damaging action of Vipera russelli venom phospholipase A(2). Cellular and Molecular Life Sciences 53: 152–155.

Beeh, K.M., and J.Beier. (2006). Handle with care: targeting neutrophilsin chronic obstructive pulmonary disease and severe asthma? Clin. Exp.Allergy 36:142–157.

Burns, A.R., C.W.Smith, andD.C.Walker. (2003). Unique structural features that influencene utrophile migration into the lung. Physiol. Rev. 83:309–336.

Lilly, C.M.(2005). Diversity of asthma: evolving concepts of pathophysiology and lessons from genetics. J. Allergy Clin. Immunol. 115(Suppl. 4):S526– S531.

Lyczak, J.B.,C.L. Cannon, and G.B.Pier, (2002). Lung infections associated with cystic fibrosis.Clin. Microbiol.Rev. 15:194–222.

McIntosh, K. (2002). Community acquired pneumoniain children. N.Engl. J. Med. 346:429–437.

Meduri, G.U. (2002). Clinical review: aparadigm shift: the bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome. Crit.Care 6:24–29.

Schaloske, R.H., and E.A.Dennis. (2006). ThephospholipaseA2superfamily and its group numbering system. Biochim. Biophys. Acta 1761:1246– 1259.

Shapiro, S.D.,andE.P.Ingenito. (2005). The pathogenesis of chronic obstructive pulmonary disease:advances in the past 100years. Am.J. Respir. CellMol.Biol. 32:367–372.

Weiss, S.J. (1989). Tissue destruction by neutrophils. N. Engl .J .Med. 320:365–376.

Six DA, Dennis EA (2000).The expanding super family of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Act a 1488:1–19.

Thouin Jr LG, Ritonja A, Gubense kF, Russell FE, (1982). Neuromuscular and lethal effects of phospholipase A from Vipera ammodytes venom. Toxicon; 20:1051–8.

Kurupp S, Reeve S, Smith AI, Hodgson WC, (2005). Isolationand pharmacological characterization of papuantoxin-1,a postsynaptic neurotoxin from the venom of the Papuan black snake (Pseudechis papuanus). BiochemPharmacol;70:794–800.

Huang MZ, Gopalak rishnakone P, Chung MC, Kini RM, (1997).

Complete amino acid sequence of an acidic, cardiotoxic phospholipaseA2 from the venom of Ophiophagus hannah (King Cobra): a novel cobra venom enzyme with ‘‘pancreaticloop’’.Arch Biochem Biophys;338:150–6.

Gutierrez JM, Own by CL, (2003). Skeletal muscle degeneration induced by venom phospholipasesA2: in sights in to the mechanisms of local and systemic myotoxicity. Toxicon;42: 915–31.

Kini RM, Evans HJ.,( 1995). The role of enzymatic activity in inhibition of the extrinsictenase complex by phospholipase A2 isoenzymes from Naja nigricollis venom. Toxicon;33:1585–90.

Lu QM, Jin Y, Wei JF, Wang WY, Xiong YL. (2002). Biochemical and biological properties of Trimeresurus jerdonii venom and characterization of a platelet aggregation-inhibiting acidic phospholipaseA2. JNatToxins;11: 25–33.

Andriao- Escarso SH, Soares AM, Fontes MR, Fuly AL, Correa FM, Rosa JC, et al. (2002). Structural and functional characterization of an acidic platelet aggregation inhibitor and hypotensive phospholipaseA(2) from Bothrops jararacussu snake venom. BiochemPharmacol;64: 723–32.

Kini RM, Evans HJ. (1997). Effects of phospholipase A2 enzymes on platelet aggregation. In: KiniRM, editor.Venom phospholipaseA2 enzymes: structure, function and mechanism. England: John Wiley and Sons Ltd. p. 369–87.

Colman RW, Marder VJ, Salzman EW, HirshJ. (1994). Overviewof hemostasis. In: Colman RW, HirshJ, Marder VJ, Salzman EW, editors. Hemostasis and thrombosis: basic principles and clinical practice. Philadelphia: JBLippincott Company. p.3–18.

Da Mata ÉC, Mourão CB et al. (2017): Antiviral activity of animal venom peptides and related compounds. JVenom Anim Toxins Incl Trop Dis., 6:23-33.

Paweska JT (2008): Epidemiology of RVF: Potential Risks for introduction into Europe.http://www.scielo.br/scielo.php?

La Beaud AD, Muchiri EM, Ndzovu M et al. (2008):Interepidemic Rift Valley fever virus seropositivity,northeastern Kenya. Emerg Infect Dis., 14(8):1240-6.

Martinez JP, Sasse F, Brönstrup M et al. (2015). Antiviral drug discovery: broad-spectrum drugs fromnature. Nat Prod Rep., 32(1):29–48.

Vigerelli H, Sciani JM, Jared C et al. (2014). Bufotenine is Vigerelli able to block rabies virus infectionin BHK-21 cells. J Venom Anim Toxins incl Trop Dis.,20(1):45-49.

Cunha-Neto RS, Vigerelli H, Jared C et al. (2015).Synergic effects between ocellatin- F1 and bufotenine onthe inhibition of BHK-21 cellular infection by the rabiesvirus. J Venom Anim Toxins incl Trop Dis., 21:50-56.

Rivero JVR, de Castro FOF, Stival AS et al. (2011). Mechanisms of virus resistance and antiviral activity ofsnake venoms. J Venom Anim Toxins incl Trop Dis.,17(4):387–93.

Woolhouse M, ScottF, HudsonZ, HoweyR, Chase-Topping M.,(2012). Human viruses: discovery and emergence. PhilosTrans RSocLond B BiolSci.;367(1604):2864–71. doi:10.1098/rstb.2011.0354.

Chippaux JP (2014). Out breaks of Ebolavirus disease in Africa :the beginnings of a tragic saga.JVenomAnimToxinsinclTropDis.;20:44.doi:10.1186/ 1678-9199-20-44.

World Health Organization (WHO), (2016).Cancer. http://www.who.int/ media centre/ facts heets/fs297/en/. Accessed1Jan.

Martinez JP, Sasse F, Brönstr up M, Diez J, Meyerhans A, (2015). Antiviral drug discovery: broad-spectrum drugs fromnature.NatProdRep.;32(1):29–48. doi:10.1039/c4np00085.

Vigerelli H, Sciani JM, JaredC, Antoniazzi MM, Caporal eGM ,da Silva Ade C, et al.( 2014). Bufotenine is able to block rabies virus infection in BHK-21cells. JVenom Anim Toxinsinc l TroDis.;20(1):45.doi:10.1186/1678-9199-20-45.

Cunha-Neto RS, Vigere lli H,Jared C,Antoniazzi MM, Chaves LB, Silva ACR,e t al.( 2015). Synergic effects between ocellatin-F1and bufotenine on the inhibition of BHK-21cellular infection by the rabies virus. JVenomAnimToxinsinclTrop Dis.;21:50.doi:10.1186/s40409-015-0048-1.

Rivero J V R ,de Castro FOF ,Stival AS, Magalhães MR, Carmo FilhoJR ,P frimer I A H (2011). Mechanisms of virus resistance and antiviral activity of snake venoms. Venom AnimToxinsincl Trop Dis; 17(4) :387 – 93. doi:10.1590/ S1678- 91992011000400005.

Hmed B, Serria HT, Mounir ZK (2013). Scorpion peptides: potential use for new drug development. JToxicol. 2013: article ID 958797. doi:10.1155/2013/958797.

Jenssen H, Hamill P, Hancock RE (2006) .Peptide antimicrobial agents. Clin Microbiol Rev.;19(3):491–511.doi:10.1128 CMR .00056-05.

Bahar AA, Ren D.( 2013). Antimicrobial peptides. Pharmaceuticals (Basel). 6 (12):1543–75. doi: 10.3390/ ph6121543.

Gould, E.A., Solomon, T., (2008). Pathogenic flaviviruses.The Lancet31, 500–509.

World Health Organization (WHO), (2010). ImpactofDengue. http://www. who.int /csr /disease /dengue /impact/ en/ (accessed 20.11.10).

Harris, E.,Videa,L., Perez,E., Sandoval,Y.,Tellez, M.L.,Perez,R., Cuadra, J., Rocha,W., Idiaquez,R.E., Alonso,M.A.,Delgado,L.A.,Campo,F., Acevedo, A., Gonzalez, J.J., Amador, A., Balmaseda, (2000). Clinical, epidemiologic, and virologic features of dengue in the1998 epidemic in Nicaragua. Am.J.Trop.Med.Hyg.63,5–11.

Robertson, S.E., Hull, B.P.,Tomori, O., Bele, O., Le Duc, J.W., Esteves, K.,(1996).Yellow fever, a decade of reemergence. JAMA276,1157–1162.

Hombach, J.,Barrett, A.D., Cardosa, M.J.,Deubel, V., Guzman,M., Kurane, I., Roehrig, J.T.,Sabchareon,A., Kieny,M.P.,(2005). Reviewon flavivirus vaccine evelopment: proceedings of a meeting jointly organized by the world health Organization and the Thai Ministry of public health. Vaccine 23,2689–2695.

Debnath, A.,Saha,A., Gomes, A.,Biswas,S., Chakrabarti,P.,Giri,B., Biswas, A.K.,Gupta,S.D.,Gomes, A.,(2010). Alethal c ardiotoxic cytotoxic protein from the Indian monocell at ecobra (Najakaouthia) venom. Toxicon56,569–579.

H.C., Zingali, R.B., Albuquerque, M.G.,Pujol-Luz, M., Rodrigues, C.R. , (2004). Snake venom thrombin-like enzymes: from reptilase to now. Cell. Mol. Life Sci.61,843–856.

Gutiérrez, J.M., Rucavado, A., Escalante,T.,Díaz,C.,(2005).Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved inmicrovesseldamage.Toxicon45,997–1011.

Lee, C.Y.,(1977) .Snake Venoms .Springer-Verlag, Berlin.

Montecucco, C.,Gutiérrez, J.M., Lomonte,B., (2008).Cellularpathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common aspects of their mechanisms of action. Cell. Mol.Life Sci. 65,2897–2912.

Oyama,E.,Fukuda,T.,Takahashi,H.,(2008). Aminoacid sequenceof a kinin-releasingenzyme,KR-E-1,from the venom of Agkistrodonca liginosus (Kankoku-mamushi). Toxicon 52,651–654.

Vital-Brazil, O.,(1982). Peçonhas. In :Corbett, C.E.(Ed.), Farmacodinâmica. Guanabara-Koogan, Riode Janeiro, pp.679–697.

Bercovici,D.,Chudzinski,A.M.,Dias,V.O.,Esteves,M.I.,Hiraichi,E., Oishi, N.Y., Picarelli,Z.P., Rocha,M.C., Ueda, C.M.P.M.,Yamanouye, N., Raw,I.,(1987). Asystematic fractionation of Crotalus durissus terrificus venom. Mem. Inst. Butantan 49,69 – 78.

Petricevich,V.L.,Mendonça, R.Z.,(2003). Inhibitory potential of Crotalus durissusterrificusvenomonmeaslesvirusgrowth.Toxicon42,143–153.

Slotta, K.H., Fraenkel-Conrat, H.,(1938). Schlangen giffe,III:mitteilung reinin gungundcry .BerDtch.Chem. Ges, Basel71,1076–1081.

Gonçalves, J. M., Vieira, L.G.,(1950). Estudossobr even enosdeser pentesbrasileiras: an áliseeletr of orética. An aisda Academia Brasileir a deCiências 22,141.

Vieira, L.F.,(2009).Functional and structural characterization of aphospholipase A2 not complexed, intercro, isolated from the venom of Crotalus Durissus Terrificus. 87f. Dissertation (Masterin Biochemistry) Faculty of Medicine of Ribeirão Preto, University of SãoPaulo– RibeirãoPreto.

Alexander, G., Grothusen, J., Zepeda, H., Schwartzman, R.J., (1988).Gyroxina toxin from the venom of Crotalus durissus terrificus, is a trombin-like enzyme. Toxicon26, 953–960.

Prado-Franceschi,J.,Vital-Brasil,O.,(1981).Convulxin,anewtoxinfromthe venom of the South American rattle snake Crotalus durissu sterrificus. Toxicon19,875–887.

Faure, G., Bon, C.,(1988).Crotoxin,aphospholipaseA2 neurotoxinfromthe south America rattle snake Crotalus durissust errificus: purification of several isoforms and a comparation of their molecular structure and of theirbiological activites. Biochemistry 27,730–738.

Hendon, R. ,Fraenkel-Conrat,H.,(1971).Biological roles of the components of crotoxin.Proc.Wat.Ac.Sci.68,1560–1563.

Rubsamen, K., Breithaupt, H., Habermann, E., (1971). Biochemistry and pharmacology of the crotoxin complex. I. Subfractionation and recombination of the crotoxin complex. Naunyn-Schmiede bergs Arch. Pharmacol.270,274288.

Faure,G.,Guillaume,J.L.,Camoin,L.,Bon,C.,(1991).Biochemistry30,8074– 8083.

Bouchier, C., Boulain, J.C., Bon,C., MCnez, A.,(1991). Analysis of c DNAs encodig the two subunits of crotoxin, a phospholipase A2 neurotoxin from rattle snake venom: the acidic nonenzymatic subunit derives from aphospholipaseA2-likeprecurso. Biochim. Biophys. Acta1088, 401–408.

Laure, C.J., (1975). Dieprimär struktur descrotamins. Hoppe-Zeyllers Physiol. Chem. Berlim 365,213–215.

Vital-Brazil, O., (1966). Pharmacology of crystalline ecrotoxin. Neuromuscular blocking action. Mem. Inst. Butantan33,981–992.

Faure, G., Choumet,V., Bouchier, C., Camoin,L., Guillaume, J.L., Monegier, B., Willorgne, M.,Cassian Bon, Y.,(1994).The origin of the diversity of crotoxin isoformsi n the venom of Crotalus durissuster- rificus. Eur.J.Biochem.223,161–164.

Dalgleish, A.G., et al. (1984). The CD4 (T4) antigen is an essential com- ponent of the receptor for the AIDS retrovirus. Nature.312:763–767.

Klatzmann, D., et al. (1984). T-lymphocyte T4 molecule behaves as the

receptor for human retrovirus LAV. Nature. 312:767–768.

Alkhatib, G., et al. (1996). CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science.272:1955–1958.

Deng, H., et al. (1996). Identification of a major co-receptor for primary isolates of HIV-1.Nature.381:661–666.

Dragic, T., et al. (1996). HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR5. Nature.381:667–673.

Feng, Y., Broder, C.C., Kennedy, P.E., and Berger, E.A. (1996). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G pro- tein–coupled receptor. Science.272:872–877.

Moore, J.P., Trkola, A., and Dragic, T. (1997). Co-receptors for HIV-1 entry.Curr.Opin.Immunol.9:551–562.

Littman, D.R. (1998). Chemokine receptors: keys to AIDS pathogenesis? Cell.93:677–680.

Chan, D.C., and Kim, P.S. (1998). HIV entry and its inhibition. Cell. 93:681–684.

Stevenson, M. (1996). Portals of entry: uncovering HIV nuclear transport pathways. Trends Cell. Biol. 6:9–15.

Bukrinsky, M.I., et al. (1993). A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells.Nature.365:666–669.

Gallay, P., Swingler, S., Song, J., Bushman, F., and Trono, D. (1995). HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell.83:569–576.

Gallay, P., Hope, T., Chin, D., and Trono, D. (1997). HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherinpathway.Proc. Natl. Acad. Sci. USA. 94:9825–9830.

Jacque, J.M., et al. (1998). Modulation of HIV-1 infectivity by MAPK, a viri- on-associated kinase.EMBO J. 17:2607–2618.

Cocchi, F., et al. (1995). Identification of RANTES, MIP-1 alpha, and MIP- 1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science.270:1811–1815.

Oberlin, E., et al. (1996). The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line–adapted HIV-1. Nature.382:833–835.

Schols, D., Este, J.A., Henson, G., and De, C.E. (1997). Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV co-receptor fusin/CXCR- 4. Antiviral Res. 35:147–156.

Doranz, B.J., et al. (1997). A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186:1395–1400.

Pakker, N.G., et al. (1998). Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redis- tribution and proliferation. Nat. Med. 4:208–214.

Autran, B., et al. (1997). Positive effects of combined antiretroviral thera- py on CD4+ T cell homeostasis and function in advanced HIV disease. Science.277:112–116.

Perelson, A.S., et al. (1997). Decay characteristics of HIV-1-infected com- partments during combination therapy. Nature.387:188–191.

Kini, R.M., and Evans, H.J. (1989). A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon.27:613–635.

Gelb, M.H., Jain, M.K., Hanel, A.M., and Berg, O.G. (1995). Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospho- lipases A2. Annu. Rev. Biochem. 64:653–688.

Dennis, E.A.( 1997). The growing phospholipase A2 superfamily of signal transduction enzymes.TrendsBiochem. Sci. 22:1–2.

Murakami, M., Nakatani, Y., Atsumi, G., Inoue, K., and Kudo, I. (1997). Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225–283.

Tischfield, J.A. (1997). A reassessment of the low molecular weight phos- pholipase A2 gene family in mammals.J. Biol. Chem. 272:17247–17250.

Lambeau, G., and Lazdunski, M. (1999). Receptors for a growing family of secreted phospholipases A2.Trends Pharmacol. Sci. 20:162–170. 28.

Cupillard, L., Koumanov, K., Mattei, M.G., Lazdunski, M., and Lambeau, G. (1997). Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2.J. Biol. Chem. 272:15745–15752.

Valentin, E., et al. 1999. Cloning and recombinant expression of a novel mouse-secreted phospholipase A2.J. Biol. Chem. 274:19152–19160.

Houk, P., Bograd, A. and Woesik, R. (2007). Thetransition zone chlorophyll front can trigger Acanthasterplancioutbreaks in the Pacific Ocean: Historical confirmation. J. Oceanogr., 63(1): 149-154.

Baird, A.H., Pratchett, M.S., Hoey, A.S., Herdiana, Y. and Campbell, S.J. (2013) Acanthasterplanciis a major cause of coral mortality in Indonesia. Coral Reefs, 32(3): 803-812.

Roche, R.C., Pratchett, M.S., Carr, P., Turner, J.R., Wagner, D., Head, C. and Sheppard, C.R.R. (2015). Localized outbreaks of Acanthasterplanciat an isolated and unpopulated reef atoll in the Chagos Archipelago. Mar. Biol., 162(8): 1695-1704.

Haszprunar, G., Vogler, C. and Wörheide, G. (2017). Persistent gaps of knowledge for naming and distin¬guish ing multiple species of crown-of-thorns-seastar in the Acanthasterplancispecies complex. Diversity, 9(2): 1-10.

Hoey, J., Campbell, M., Hewitt, C., Gould, B. and Bird, R. (2016). Acanthasterplanciinvasions: Applying biosecurity practices to manage a native boom and bust coral pest in Australia. Manag. Biol. Invasions, 7(3): 213-220.

Chak, S.T.C., Dumont, C.P., Adzis, K.A.A. and Yewdall, K. (2018). Effectiveness of the removal of coral-eating predator Acanthasterplanci in PulauTioman marine park, Malaysia. J. Mar. Biol. Assoc. United Kingdom, 98(1): 183-189.

Lee, C.C., Hsieh, H.J., Hsieh, C.H. and Hwang, D.F. (2015). Plancitoxin I from the venom of crown-of-thorns starfish (Acanthasterplanci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells.

Lee, C.C., Hsieh, H.J., Hsieh, C.H. and Hwang, D.F. (2014). Spine venom of crown-of-thorns starfish (Acanthasterplanci) induces antiproliferation and apoptosis of human melanoma cells (A375.S2). Toxicon, 91: 126-134.

Wijanarko, A., Ginting, M.J. and Sahlan, M. (2017). Saponin isolation as main ingredients of insecticide and collagen type i from crown of-starfish (Acanthasterplanci). IOP Conf. Ser. Earth Environ. Sci., 89(12032): 1-20.

Ibrahim, F., Widhyastuti, N., Savitri, I.K.E., Sahlan, M. and Wijanarko, A. (2013). Antibacterial investigated of phospho¬lipase A2 from the spines venom of crown of thorns starfish Acanthasterplanci. Int. J. PharmaBiosci., 4(2): 1-5.

Ota, E., Nagai, H., Nagashima, Y. and Shiomi, K. (2006). Molecular cloning of two toxic phospholipases A2from the crown-of-thorns starfish Acanthasterplancivenom. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 143(1): 54-60.

Koyama, T., Noguchi, K., Aniya, Y. and Sakanashi, M. (1998). Analysis for sites of anticoagulant action of planci¬nin, a new anticoagulant peptide isolated from the starfish Acanthasterplanci, in the blood coagulation cascade. Gen. Pharmacol., 31(2): 277-282.

Shiomi, K.A., Kazama, A., Shimakura, K. and Nagashima, Y. (1998). Purification and properties of phospholipases A2 from the crown-of-thorns starfish (Acanthasterplanci) venom. Toxicon, 36(4): 589-599.

Savitri, I.K.E., Ibrahim, F., Sahlan, M., and Wijanarko, A. (2011). Rapid and Efficient Purification Method of Phospholipase A2 from Acanthasterplanci. Int. J. Pharma. Bio. Sci., 2(2): 401-406.

Savitri, I.K.E., Sahlan, M., Ibrahim, F., and Wijanarko, A. (2012). Isolation and characterization of phospholipase A2 From the spines venom of the crown-of-thorns starfish isolated from Papua island. Int. J. Pharma. Bio. Sci., 3(4): 603–608.

Da Mata, E.C.G., Mourão, C.B.F., Rangel, M. and Schwartz, E.F. (2017). Antiviral activity of animal venom peptides and related compounds.J.Venom. Anim. Toxins Incl. Trop. Dis., 23(1): 1-12.

Rivero, J.V.R., de Castro, F.O.F., Stival, A.S., Magalhães, M.R., CarmoFilho, J.R. and Pfrimer, I.A.H. (2011). Mechanisms of virus resistance and antiviral activity of snake venoms. J. Venom. Anim. Toxins Incl. Trop. Dis., 17(4): 387-393.

Fenard, D., Lambeau, G., Maurin, T., Lefebvre, J.C. and Doglio, A. (2001). A peptide derived from bee venom-se¬creted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. MolPharmacol.,60(2): 341-347.

Leon G, Sanchez L, Hernandez A, Villalta M, Herrera M, Segura A, et al. (2011). Immune response towards snake venoms. Inflammatory Allergy Drug Targets ; 10: 381–398. http:// dx. Doi .org/10.2174/1871528 11797200605 PMid:21824081

M C Boffa, G A Boffa, (1976). Biochim Biophys Acta May 13;429(3)

:839- 52. doi: 10.1016/0005-2744(76)90330-2




DOI: http://dx.doi.org/10.52155/ijpsat.v21.2.1915

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mohy El Din Abdel Fattah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.