Cross-Lingual Transfer Learning for Enhancing Kinyarwanda Automatic Speech Recognition
Abstract
Full Text:
PDFReferences
REFERENCES
. Ajani, Y. A., Tella, A., & Dlamini, N. P. (2024). Indigenous Language Preservation and Promotion through Digital Media Technology in the Fourth Industrial Revolution. Digital Media and the Preservation of Indigenous Languages in Africa: Toward a Digitaliz.
.Alharbi, S., Alrazgan, M., Alrashed, A., Alnomasi, T., Almojel, R., Alharbi, R., ... & Almojil, M. (2021). Automatic speech recognition: Systematic literature review. Ieee Access, 9, 131858-131876.
. Ayvaz, U., Gürüler, H., Khan, F., Ahmed, N., & Bobomirzaevich, A. A. (2022). Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning. Computers, Materials & Continua, 71(3).
. Besacier, L. B. (2014). Automatic speech recognition for under-resourced languages. A survey. Speech communication, 56, 85-100.
. Fayzullayeva, N., & Kamolova, M. (2025). PHONETICS AS THE STUDY OF THE ACTUAL SPEECH SOUNDS THAT CREATE WORDS IN A LANGUAGE. . Modern Science and Research, , 4(2), 46-52.
. Fendji, J. L. K. E., Tala, D. C., Yenke, B. O., & Atemkeng, M. (2022). Automatic speech recognition using limited vocabulary: A survey. Applied Artificial Intelligence, 36(1), 2095039.
. Hassini, K., Khalis, S., Habibi, O., Chemmakha, M., & Lazaar, M. (2024). An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things. . Knowledge-Based Systems, , 294, 111785.
. Huang, X., Qiao, L., Yu, W., Li, J., & Ma, Y. (2020). End-to-end sequence labeling via convolutional recurrent neural network with a connectionist temporal classification layer. International Journal of Computational Intelligence Systems, 13(1), 341-351.
. Kumar, Y. ( 2024). A comprehensive analysis of speech recognition systems in healthcare: current research challenges and future prospects. SN Computer Science, 5(1), 137.
. Li, J. (2022). Recent advances in end-to-end automatic speech recognition. APSIPA Transactions on Signal and Information Processing, 11(1).
. Myakala, P. K., & Naayini, P. . (2023). Bridging the Gap: Leveraging Transfer Learning for Low-Resource NLP Tasks. International Journal of Computer Techniques, 10(5).
. Pandey, L. L. (2024). Towards scalable efficient on-device ASR with transfer learning. . arXiv preprint arXiv, 2407.16664.
Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv, 1904.08779.
. Ramaila, S. (2025). The affordances of code-switching: a systematic review of its roles and impacts in multilingual contexts. African Journal of Teacher Education, 14(1), 142-175.
. Ranathunga, S., Lee, E. S. A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023). Neural machine translation for low-resource languages. A survey. ACM Computing Surveys, , 55(11), 1-37.
. Sayers, D., Sousa-Silva, R., Höhn, S., Ahmedi, L., Allkivi-Metsoja, K., Anastasiou, D., ... & Yayilgan, S. Y. (2021). The Dawn of the Human-Machine Era: A forecast of new and emerging language technologies. language technologies.
. Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
. Smit, P., Virpioja, S., & Kurimo, M. (2021). Advances in subword-based HMM-DNN speech recognition across languages. Computer Speech & Language, 66, 101158.
. Soydaner, D. . (2022). Attention mechanism in neural networks: where it comes and where it goes. Neural Computing and Applications, 34(16), 13371-13385.
. Yılmaz, E. B. (2018). Building a unified code-switching ASR system for South African languages. arXiv preprint arXiv, 1807.10949.
. nisr, (2022). Fifth Rwanda Population and Housing Census (2022 RPHC).
. Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv, 1904.08779.
Ilori, O., Nwosu, N. T., & Naiho, H. N. N. (2024). Enhancing IT audit effectiveness with agile methodologies: A conceptual exploration. Engineering Science & Technology Journal, 5(6), 1969-1994.
. Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., & Wang, Q. (2024). Software testing with large language models: Survey, landscape, and vision. IEEE Transactions on Software Engineering, 50(4), 911-936.
. Ai, X., Allaire, C., Calace, N., Czirkos, A., Elsing, M., Ene, I., ... & Zhang, J. (2022). A common tracking software project. Computing and Software for Big Science, 6(1), 8.
. Sharma, N., Baral, S., Paing, M. P., & Chawuthai, R. (2023). Parking time violation tracking using YOLOv8 and tracking algorithms. Sensors, 23(13), 5843.
. Rokis, K., & Kirikova, M. (2022, September). Challenges of low-code/no-code software development: A literature review. In International conference on business informatics research (pp. 3-17). Cham: Springer International Publishing.
. Kinoshita‐Ise, M., & Sachdeva, M. (2022). Update on trichoscopy: integration of the terminology by systematic approach and a proposal of a diagnostic flowchart. The Journal of Dermatology, 49(1), 4-18.
DOI: http://dx.doi.org/10.52155/ijpsat.v55.2.7815
Data citation
REFERENCES [1]. Ajani, Y. A., Tella, A., & Dlamini, N. P. (2024). Indigenous Language Preservation and Promotion through Digital Media Technology in the Fourth Industrial Revolution. Digital Media and the Preservation of Indigenous Languages in Africa: Toward a Digitaliz. [2].Alharbi, S., Alrazgan, M., Alrashed, A., Alnomasi, T., Almojel, R., Alharbi, R., ... & Almojil, M. (2021). Automatic speech recognition: Systematic literature review. Ieee Access, 9, 131858-131876. [3]. Ayvaz, U., Gürüler, H., Khan, F., Ahmed, N., & Bobomirzaevich, A. A. (2022). Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning. Computers, Materials & Continua, 71(3). [4]. Besacier, L. B. (2014). Automatic speech recognition for under-resourced languages. A survey. Speech communication, 56, 85-100. [5]. Fayzullayeva, N., & Kamolova, M. (2025). PHONETICS AS THE STUDY OF THE ACTUAL SPEECH SOUNDS THAT CREATE WORDS IN A LANGUAGE. . Modern Science and Research, , 4(2), 46-52. [6]. Fendji, J. L. K. E., Tala, D. C., Yenke, B. O., & Atemkeng, M. (2022). Automatic speech recognition using limited vocabulary: A survey. Applied Artificial Intelligence, 36(1), 2095039. [7]. Hassini, K., Khalis, S., Habibi, O., Chemmakha, M., & Lazaar, M. (2024). An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things. . Knowledge-Based Systems, , 294, 111785. [8]. Huang, X., Qiao, L., Yu, W., Li, J., & Ma, Y. (2020). End-to-end sequence labeling via convolutional recurrent neural network with a connectionist temporal classification layer. International Journal of Computational Intelligence Systems, 13(1), 341-351. [9]. Kumar, Y. ( 2024). A comprehensive analysis of speech recognition systems in healthcare: current research challenges and future prospects. SN Computer Science, 5(1), 137. [10]. Li, J. (2022). Recent advances in end-to-end automatic speech recognition. APSIPA Transactions on Signal and Information Processing, 11(1). [11]. Myakala, P. K., & Naayini, P. . (2023). Bridging the Gap: Leveraging Transfer Learning for Low-Resource NLP Tasks. International Journal of Computer Techniques, 10(5). [12]. Pandey, L. L. (2024). Towards scalable efficient on-device ASR with transfer learning. . arXiv preprint arXiv, 2407.16664. Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv, 1904.08779. [13]. Ramaila, S. (2025). The affordances of code-switching: a systematic review of its roles and impacts in multilingual contexts. African Journal of Teacher Education, 14(1), 142-175. [14]. Ranathunga, S., Lee, E. S. A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023). Neural machine translation for low-resource languages. A survey. ACM Computing Surveys, , 55(11), 1-37. [15]. Sayers, D., Sousa-Silva, R., Höhn, S., Ahmedi, L., Allkivi-Metsoja, K., Anastasiou, D., ... & Yayilgan, S. Y. (2021). The Dawn of the Human-Machine Era: A forecast of new and emerging language technologies. language technologies. [16]. Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. [17]. Smit, P., Virpioja, S., & Kurimo, M. (2021). Advances in subword-based HMM-DNN speech recognition across languages. Computer Speech & Language, 66, 101158. [18]. Soydaner, D. . (2022). Attention mechanism in neural networks: where it comes and where it goes. Neural Computing and Applications, 34(16), 13371-13385. [19]. Yılmaz, E. B. (2018). Building a unified code-switching ASR system for South African languages. arXiv preprint arXiv, 1807.10949. [20]. nisr, (2022). Fifth Rwanda Population and Housing Census (2022 RPHC). [21]. Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv, 1904.08779. [22] Ilori, O., Nwosu, N. T., & Naiho, H. N. N. (2024). Enhancing IT audit effectiveness with agile methodologies: A conceptual exploration. Engineering Science & Technology Journal, 5(6), 1969-1994. [23]. Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., & Wang, Q. (2024). Software testing with large language models: Survey, landscape, and vision. IEEE Transactions on Software Engineering, 50(4), 911-936. [24]. Ai, X., Allaire, C., Calace, N., Czirkos, A., Elsing, M., Ene, I., ... & Zhang, J. (2022). A common tracking software project. Computing and Software for Big Science, 6(1), 8. [25]. Sharma, N., Baral, S., Paing, M. P., & Chawuthai, R. (2023). Parking time violation tracking using YOLOv8 and tracking algorithms. Sensors, 23(13), 5843. [26]. Rokis, K., & Kirikova, M. (2022, September). Challenges of low-code/no-code software development: A literature review. In International conference on business informatics research (pp. 3-17). Cham: Springer International Publishing. [27]. Kinoshita‐Ise, M., & Sachdeva, M. (2022). Update on trichoscopy: integration of the terminology by systematic approach and a proposal of a diagnostic flowchart. The Journal of Dermatology, 49(1), 4-18.
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Igiraneza Lahairoi Bayingana, NTEZIRIZA NKERABAHIZI Josbert, HABIMANA Theodore

This work is licensed under a Creative Commons Attribution 4.0 International License.


















