Vertical Distribution of Nickel (Ni) in Mangrove Sediments
Abstract
Keywords
Full Text:
PDFReferences
REFERENCE
Hsiung, A. R., Ong, O. X. J., Teo, X. S., Friess, D. A., Todd, P. A., Swearer, S. E., & Morris, R. L. (2024). Determinants of mangrove seedling survival incorporated within hybrid living shorelines. Ecological Engineering, 202, 107235. https://doi.org/10.1016/j.ecoleng.2024.107235
Lang’At, J. K. S., Kairo, J. G., Mencuccini, M., Bouillon, S., Huxham, M., Skov, M. W., & Waldron, S. (2014). Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE, 9(9), e107868. https://doi.org/10.1371/journal.pone.0107868
Soper, F. M., Sparks, J. P., Cole, T. G., Sharma, S., Litton, C. M., & Mackenzie, R. A. (2019). Non-native mangroves support carbon storage, sediment carbon burial, and accretion of coastal ecosystems. Global Change Biology, 25(12), 4315–4326. https://doi.org/10.1111/gcb.14813
Chai, M., Zan, Q., Tam, N. F. Y., & Li, R. (2018). Effects of mangrove plant species on accumulation of heavy metals in sediment in a heavily polluted mangrove swamp in Pearl River Estuary, China. Environmental Geochemistry and Health, 41(1), 175–189. https://doi.org/10.1007/s10653-018-0107-y
Pérez, A., Breithaupt, J. L., Saldarriaga, M. S., Marotta, H., Sanders, L., Gutierrez, D., Sanders, C. J., Machado, W., & Smoak, J. M. (2020). Carbon and nutrient accumulation in mangrove sediments affected by multiple environmental changes. Journal of Soils and Sediments, 20(5), 2504–2509. https://doi.org/10.1007/s11368-020-02612-4
Zhang, Z.-W., Xu, X.-R., Sun, Y.-X., Yu, S., Chen, Y.-S., & Peng, J.-X. (2014). Heavy metal and organic contaminants in mangrove ecosystems of China: a review. Environmental Science and Pollution Research, 21(20), 11938–11950. https://doi.org/10.1007/s11356-014-3100-8
Danovaro, R., Cocozza Di Montanara, A., Corinaldesi, C., Dell’Anno, A., Illuminati, S., Willis, T. J., & Gambi, C. (2023). Bioaccumulation and biomagnification of heavy metals in marine micro-predators. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-05539-x
Oros, A. (2025). Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts. Journal of Xenobiotics, 15(2), 59. https://doi.org/10.3390/jox15020059
Pambudi, D. S. (2023). Pengaruh Kerapatan Mangrove terhadap Kelimpahan Kepiting Mangrove (Scylla Spp.) di Kawasan Ekosistem Mangrove Rembang. Jurnal Kelautan Nasional, 18(3), 219. https://doi.org/10.15578/jkn.v18i3.13149
Joandani, G. K. J., Suryono, C. A., & Pribadi, R. (2019). Kajian Potensi Pengembangan Ekowisata Sebagai Upaya Konservasi Mangrove Di Desa Pasar Banggi, Kabupaten Rembang. Journal of Marine Research, 8(1), 117–126. https://doi.org/10.14710/jmr.v8i1.24337
Rohmah, A. N., & Sidiq, W. (2025). Peran Masyarakat Dalam Upaya Pengurangan Risiko Abrasi Di Pesisir Desa Pasar Banggi Kecamatan Rembang Kabupaten Rembang. Edu Geography, 13(1), 49–61.
Chatterjee, M., Sarkar, S. K., Bhattacharya, A. K., Saha, S., Satpathy, K. K., Massolo, S., & Bhattacharya, B. D. (2008). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150(1–4). https://doi.org/10.1007/s10661-008-0232-7
Rigaud, S., Garnier, J.-M., Moreau, X., De Jong-Moreau, L., Mayot, N., Chaurand, P., & Radakovitch, O. (2019). How to assess trace elements bioavailability for benthic organisms in lowly to moderately contaminated coastal sediments? Marine Pollution Bulletin, 140, 86–100. https://doi.org/10.1016/j.marpolbul.2019.01.007
Bastakoti, U., Alfaro, A. C., Robertson, J., Marchand, C., & Bourgeois, C. (2019). Temporal variations of trace metals and a metalloid in temperate estuarine mangrove sediments. Environmental Monitoring and Assessment, 191(12). https://doi.org/10.1007/s10661-019
Haya, L., Septiana, A., Rahim, S., Mckenzie, R. A., & La Fua, J. (2023). The carrying capacity of estuarine mangroves in maintaining the coastal urban environmental health of Southeast Sulawesi, Indonesia. Egyptian Journal of Aquatic Research, 49(3), 327–338. https://doi.org/10.1016/j.ejar.2023.03.002
Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
Kolawole, T. O., Jimoh, M. T., Olatunji, A. S., & Fajemila, O. T. (2018). Heavy Metal Contamination and Ecological Risk Assessment in Soils and Sediments of an Industrial Area in Southwestern Nigeria. Journal of Health and Pollution, 8(19), 180906. https://doi.org/10.5696/2156-9614-8.19.180906
Yeh, G., Vu, C.-T., Tran, H.-T., Bui, X.-T., Lin, C., Hoang, H.-G., & Shern, C.-C. (2020). Assessment of heavy metal contamination and adverse biological effects of an industrially affected river. Environmental Science and Pollution Research, 27(28), 34770–34780. https://doi.org/10.1007/s11356-020-07737-0
Chowdhury, A., & Maiti, S. K. (2016). Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Human and Ecological Risk Assessment: An International Journal, 22(7), 1519–1541. https://doi.org/10.1080/10807039.2016.1190636
Coogan, L. A. (2013). 4.14 - The Lower Oceanic Crust. In Treatise on Geochemistry (Vol. 4, pp. 497–541). https://doi.org/10.1016/b978-0-08-095975-7.00316-8
Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(2), 175. https://doi.org/10.1130/0016-7606(1961)72[175:doteis]2.0.co;2
He, B., Chai, M., Li, R., & Qiu, G. (2013). Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environmental Geochemistry and Health, 36(3), 467–476. https://doi.org/10.1007/s10653-013-9574-3
Usese, A., Chukwu, O. L., Rahman, M. M., Oyewo, E. O., Islam, S., & Naidu, R. (2017). Enrichment, contamination and geo-accumulation factors for assessing arsenic contamination in sediment of a Tropical Open Lagoon, Southwest Nigeria. Environmental Technology & Innovation, 8, 126–131. https://doi.org/10.1016/j.eti.2017.06.006
Singovszka, E., Demcak, S., Balintova, M., & Pavlikova, P. (2017). Metal Pollution Indices of Bottom Sediment and Surface Water Affected by Acid Mine Drainage. Metals, 7(8), 284. https://doi.org/10.3390/met7080284
Vaze, J., & Chiew, F. H. S. (2004). Nutrient Loads Associated with Different Sediment Sizes in Urban Stormwater and Surface Pollutants. Journal of Environmental Engineering, 130(4), 391–396. https://doi.org/10.1061/(asce)0733-9372(2004)130:4(391)
Deng, B., Zhang, J., Zhou, J., & Zhang, G. (2009). Enhanced anthropogenic heavy metal dispersal from tidal disturbance in the Jiaozhou Bay, North China. Environmental Monitoring and Assessment, 161(1–4), 349–358. https://doi.org/10.1007/s10661-009-0751-x
Treude, T., Krause, S., Maltby, J., Dale, A. W., Coffin, R., & Hamdan, L. J. (2014). Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. Geochimica et Cosmochimica Acta, 144, 217–237. https://doi.org/10.1016/j.gca.2014.08.018
Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051
DOI: http://dx.doi.org/10.52155/ijpsat.v55.1.7739
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Prastyo Abi Widyananto, Novian Prahandy Kusuma

This work is licensed under a Creative Commons Attribution 4.0 International License.

















