Vertical Distribution of Nickel (Ni) in Mangrove Sediments

Prastyo Abi Widyananto, Novian Prahandy Kusuma

Abstract


Mangrove forests act as natural shields, safeguarding coastlines from erosion, storms, and large waves, while also capturing sediment to support the stability of coastal ecosystems. These sediments in mangrove regions are recognized as the main repository for various pollutants, including heavy metals. Nickel (Ni) is one such metal pollutant of concern, as it is a heavy metal that can be harmful in large quantities and may originate from both industrial activities and natural geochemical processes. A significant buildup of nickel in mangrove sediments can initiate bioaccumulation and biomagnification within the food chain, potentially endangering the health of marine life and humans who consume seafood from the contaminated area. By investigating the vertical distribution of mangrove sediments, the research seeks to uncover how contaminants are deposited and move into deeper sediment layers, as well as to assess the contamination status. The result demonstrate collectively indicate that the study area falls into the low contamination or uncontaminated category when compared to the global geochemical background value (20 ppm). All calculated CF values are well below the threshold of one (CF < 1), indicating that the measured nickel concentrations are generally within the range influenced by natural geogenic sources in each deep layer.

Keywords


Mangrove, Sediment, Nickel, Contamination, Coastal

Full Text:

PDF

References


REFERENCE

Hsiung, A. R., Ong, O. X. J., Teo, X. S., Friess, D. A., Todd, P. A., Swearer, S. E., & Morris, R. L. (2024). Determinants of mangrove seedling survival incorporated within hybrid living shorelines. Ecological Engineering, 202, 107235. https://doi.org/10.1016/j.ecoleng.2024.107235

Lang’At, J. K. S., Kairo, J. G., Mencuccini, M., Bouillon, S., Huxham, M., Skov, M. W., & Waldron, S. (2014). Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLoS ONE, 9(9), e107868. https://doi.org/10.1371/journal.pone.0107868

Soper, F. M., Sparks, J. P., Cole, T. G., Sharma, S., Litton, C. M., & Mackenzie, R. A. (2019). Non-native mangroves support carbon storage, sediment carbon burial, and accretion of coastal ecosystems. Global Change Biology, 25(12), 4315–4326. https://doi.org/10.1111/gcb.14813

Chai, M., Zan, Q., Tam, N. F. Y., & Li, R. (2018). Effects of mangrove plant species on accumulation of heavy metals in sediment in a heavily polluted mangrove swamp in Pearl River Estuary, China. Environmental Geochemistry and Health, 41(1), 175–189. https://doi.org/10.1007/s10653-018-0107-y

Pérez, A., Breithaupt, J. L., Saldarriaga, M. S., Marotta, H., Sanders, L., Gutierrez, D., Sanders, C. J., Machado, W., & Smoak, J. M. (2020). Carbon and nutrient accumulation in mangrove sediments affected by multiple environmental changes. Journal of Soils and Sediments, 20(5), 2504–2509. https://doi.org/10.1007/s11368-020-02612-4

Zhang, Z.-W., Xu, X.-R., Sun, Y.-X., Yu, S., Chen, Y.-S., & Peng, J.-X. (2014). Heavy metal and organic contaminants in mangrove ecosystems of China: a review. Environmental Science and Pollution Research, 21(20), 11938–11950. https://doi.org/10.1007/s11356-014-3100-8

Danovaro, R., Cocozza Di Montanara, A., Corinaldesi, C., Dell’Anno, A., Illuminati, S., Willis, T. J., & Gambi, C. (2023). Bioaccumulation and biomagnification of heavy metals in marine micro-predators. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-05539-x

Oros, A. (2025). Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts. Journal of Xenobiotics, 15(2), 59. https://doi.org/10.3390/jox15020059

Pambudi, D. S. (2023). Pengaruh Kerapatan Mangrove terhadap Kelimpahan Kepiting Mangrove (Scylla Spp.) di Kawasan Ekosistem Mangrove Rembang. Jurnal Kelautan Nasional, 18(3), 219. https://doi.org/10.15578/jkn.v18i3.13149

Joandani, G. K. J., Suryono, C. A., & Pribadi, R. (2019). Kajian Potensi Pengembangan Ekowisata Sebagai Upaya Konservasi Mangrove Di Desa Pasar Banggi, Kabupaten Rembang. Journal of Marine Research, 8(1), 117–126. https://doi.org/10.14710/jmr.v8i1.24337

Rohmah, A. N., & Sidiq, W. (2025). Peran Masyarakat Dalam Upaya Pengurangan Risiko Abrasi Di Pesisir Desa Pasar Banggi Kecamatan Rembang Kabupaten Rembang. Edu Geography, 13(1), 49–61.

Chatterjee, M., Sarkar, S. K., Bhattacharya, A. K., Saha, S., Satpathy, K. K., Massolo, S., & Bhattacharya, B. D. (2008). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150(1–4). https://doi.org/10.1007/s10661-008-0232-7

Rigaud, S., Garnier, J.-M., Moreau, X., De Jong-Moreau, L., Mayot, N., Chaurand, P., & Radakovitch, O. (2019). How to assess trace elements bioavailability for benthic organisms in lowly to moderately contaminated coastal sediments? Marine Pollution Bulletin, 140, 86–100. https://doi.org/10.1016/j.marpolbul.2019.01.007

Bastakoti, U., Alfaro, A. C., Robertson, J., Marchand, C., & Bourgeois, C. (2019). Temporal variations of trace metals and a metalloid in temperate estuarine mangrove sediments. Environmental Monitoring and Assessment, 191(12). https://doi.org/10.1007/s10661-019

Haya, L., Septiana, A., Rahim, S., Mckenzie, R. A., & La Fua, J. (2023). The carrying capacity of estuarine mangroves in maintaining the coastal urban environmental health of Southeast Sulawesi, Indonesia. Egyptian Journal of Aquatic Research, 49(3), 327–338. https://doi.org/10.1016/j.ejar.2023.03.002

Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

Kolawole, T. O., Jimoh, M. T., Olatunji, A. S., & Fajemila, O. T. (2018). Heavy Metal Contamination and Ecological Risk Assessment in Soils and Sediments of an Industrial Area in Southwestern Nigeria. Journal of Health and Pollution, 8(19), 180906. https://doi.org/10.5696/2156-9614-8.19.180906

Yeh, G., Vu, C.-T., Tran, H.-T., Bui, X.-T., Lin, C., Hoang, H.-G., & Shern, C.-C. (2020). Assessment of heavy metal contamination and adverse biological effects of an industrially affected river. Environmental Science and Pollution Research, 27(28), 34770–34780. https://doi.org/10.1007/s11356-020-07737-0

Chowdhury, A., & Maiti, S. K. (2016). Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Human and Ecological Risk Assessment: An International Journal, 22(7), 1519–1541. https://doi.org/10.1080/10807039.2016.1190636

Coogan, L. A. (2013). 4.14 - The Lower Oceanic Crust. In Treatise on Geochemistry (Vol. 4, pp. 497–541). https://doi.org/10.1016/b978-0-08-095975-7.00316-8

Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(2), 175. https://doi.org/10.1130/0016-7606(1961)72[175:doteis]2.0.co;2

He, B., Chai, M., Li, R., & Qiu, G. (2013). Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environmental Geochemistry and Health, 36(3), 467–476. https://doi.org/10.1007/s10653-013-9574-3

Usese, A., Chukwu, O. L., Rahman, M. M., Oyewo, E. O., Islam, S., & Naidu, R. (2017). Enrichment, contamination and geo-accumulation factors for assessing arsenic contamination in sediment of a Tropical Open Lagoon, Southwest Nigeria. Environmental Technology & Innovation, 8, 126–131. https://doi.org/10.1016/j.eti.2017.06.006

Singovszka, E., Demcak, S., Balintova, M., & Pavlikova, P. (2017). Metal Pollution Indices of Bottom Sediment and Surface Water Affected by Acid Mine Drainage. Metals, 7(8), 284. https://doi.org/10.3390/met7080284

Vaze, J., & Chiew, F. H. S. (2004). Nutrient Loads Associated with Different Sediment Sizes in Urban Stormwater and Surface Pollutants. Journal of Environmental Engineering, 130(4), 391–396. https://doi.org/10.1061/(asce)0733-9372(2004)130:4(391)

Deng, B., Zhang, J., Zhou, J., & Zhang, G. (2009). Enhanced anthropogenic heavy metal dispersal from tidal disturbance in the Jiaozhou Bay, North China. Environmental Monitoring and Assessment, 161(1–4), 349–358. https://doi.org/10.1007/s10661-009-0751-x

Treude, T., Krause, S., Maltby, J., Dale, A. W., Coffin, R., & Hamdan, L. J. (2014). Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. Geochimica et Cosmochimica Acta, 144, 217–237. https://doi.org/10.1016/j.gca.2014.08.018

Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051




DOI: http://dx.doi.org/10.52155/ijpsat.v55.1.7739

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Prastyo Abi Widyananto, Novian Prahandy Kusuma

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.