Effect of Reconstruction Filter and Wire Diameter on Modulation Transfer Function Values in Various CT Image Fields

Ronel Arida Missinychrista, Heri Sutanto, Jatmiko Endro Suseno

Abstract


This study analyzes the effects of wire diameter and variations in reconstruction filters (bone and soft tissue) on the 3D Modulation Transfer Function (MTF) and the Oblique MTF. The reconstruction filter is a parameter that affects CT scans’ ability to distinguish structural details, depending on the imaging objectives. The wire diameters used, namely 0,2 mm and 0,3 mm, provided differences in physical form to determine the effect of diameter on MTF values. The results showed that small-diameter wires yielded higher MTF 10%  values (better resolution) in all planes when using bone filters. Conversely, with soft tissue filters, wire diameter affected only the sagittal and coronal planes. The slight differences in the sagittal and coronal planes are due to interpolation. The bone filter consistently improves image sharpness and MTF 10% values (including in the oblique direction), while the soft tissue filter reduces these values; however, overall, the MTF 10% values obtained meet the spatial resolution standards for clinical diagnosis.


Full Text:

PDF

References


S. A. M. Tunissen et al., “Development, validation, and simplification of a scanner‐specific CT simulator,” Med. Phys., vol. 51, no. 3, pp. 2081–2095, Mar. 2024, doi: 10.1002/mp.16679.

RSD Gunung Jati Kota Cirebon, Jawa Barat, Indonesia, N. Asni, Moh. S. Nur Utami, and RSUD Cideres Kabupaten Majalengka, Jawa Barat, Indonesia, “QUALITY CONTROL CT SCAN (ANALISIS DAN EVALUASI KUALITAS CITRA),” Pros. Semin. Si-INTAN, vol. 3, no. 1, pp. 82–86, Oct. 2023, doi: 10.53862/SSI.v3.092023.014.

Phantoms for performance evaluation and quality assurance of CT scanners. Chicago: American Association of Physicists in Medicine, 1977.

U. Mahmood et al., “Quality control of radiomic features using 3D-printed CT phantoms,” J. Med. Imaging, vol. 8, no. 03, June 2021, doi: 10.1117/1.JMI.8.3.033505.

C. Anam et al., “Automated MTF measurement in CT images with a simple wire phantom,” Pol. J. Med. Phys. Eng., vol. 25, no. 3, pp. 179–187, Sept. 2019, doi: 10.2478/pjmpe-2019-0024.

Nofrianto Nofrianto, Choirul Anam, Eko Hidayanto, and Ariij Naufal, “Comparison of MTFs Measured using IndoQCT and ImQuest Software on GE CT Phantom Images,” Int. J. Sci. Res. Sci. Technol., pp. 852–858, June 2023, doi: 10.32628/IJSRST523103156.

E. Mejia, S. Sweeney, and J. E. Zablah, “Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography,” 3D Print. Med., vol. 11, no. 1, p. 4, Jan. 2025, doi: 10.1186/s41205-024-00247-6.

M. A. Lodge, J. P. Leal, A. Rahmim, J. J. Sunderland, and E. C. Frey, “Measuring PET Spatial Resolution Using a Cylinder Phantom Positioned at an Oblique Angle,” J. Nucl. Med., vol. 59, no. 11, pp. 1768–1775, Nov. 2018, doi: 10.2967/jnumed.118.209593.

C. Tominaga, H. Azumi, M. Goto, M. Taura, N. Homma, and I. Mori, “Tilted-wire method for measuring resolution properties of CT images under extremely low-contrast and high-noise conditions,” Radiol. Phys. Technol., vol. 11, no. 2, pp. 125–137, June 2018, doi: 10.1007/s12194-018-0443-8.

A. Mondal, C. Nguyen, X. Ma, A. E. Elbanna, and J. M. Carlson, “Network models for characterization of trabecular bone,” Phys. Rev. E, vol. 99, no. 4, p. 042406, Apr. 2019, doi: 10.1103/PhysRevE.99.042406.

L. F. M. de Almeida, R. F. da Silva, E. R. Leite, P. L. Squair, and M. do S. Nogueira, “XXIV International Symposium on Solid State Dosimetry and 6th Symposium on Clinical Medical Physics,” XXIV Int. Symp. Solid State Dosim. 6th Symp. Clin. Med. Phys..

E. Enjilela et al., “Cubic-Spline Interpolation for Sparse-View CT Image Reconstruction With Filtered Backprojection in Dynamic Myocardial Perfusion Imaging,” Tomography, vol. 5, no. 3, pp. 300–307, Sept. 2019, doi: 10.18383/j.tom.2019.00013.

Choirul Anam, Betha S. Wulandari, Heri Sutanto, Riska Amilia, and Yuliana Lakapu, “The Evaluation of the Tube Current Impact on Axial, Sagittal, and Coronal MTFs on CT Images Using an In-House Phantom,” Int. J. Sci. Res. Sci. Technol., vol. 11, no. 6, pp. 349–354, Nov. 2024, doi: 10.32628/IJSRST24116185.

A. M. Hernandez, P. Wu, M. Mahesh, J. H. Siewerdsen, and J. M. Boone, “Location and direction dependence in the 3D MTF for a high‐resolution CT system,” Med. Phys., vol. 48, no. 6, pp. 2760–2771, June 2021, doi: 10.1002/mp.14789.

Bushberg, J., Seibert, A., Leidholdt, E., and Boone, J., The Essential Physics of Medical Imaging.

R. Zeng et al., “Performance of a deep learning‐based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness,” Med. Phys., vol. 49, no. 2, pp. 836–853, Feb. 2022, doi: 10.1002/mp.15430.




DOI: http://dx.doi.org/10.52155/ijpsat.v55.1.7686

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ronel Arida Missinychrista, Heri Sutanto, Jatmiko Endro Suseno

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.