Essais De Fabrication De Granulés De Provende Avec Un Pelletiseur A Pédales
Abstract
Résumé : Cette étude vise à modéliser et à prédire le rendement de production d’un pelletiseur de provende à pédales à partir de paramètres mécaniques et de formulation. Les variables étudiées incluent la vitesse de rotation de la matrice, la pression à appliquer, le taux d’humidité et le type de provende. Le dispositif expérimental comprend un plan factoriel complet avec 72 échantillons, testés à trois vitesses (80, 120 et 150 tr/min), deux taux d’humidité et trois niveaux de pression. L’analyse statistique, réalisée à l’aide du logiciel Minitab 18, a permis d’établir un modèle de régression multiple de forme :
Les résultats montrent que la vitesse de rotation exerce l’influence la plus significative (p < 0,001) sur le rendement, avec un coefficient de détermination global R² = 98,35 %, indiquant un excellent ajustement du modèle. La pression et l’humidité contribuent positivement mais de façon secondaire. Ces résultats confirment l’importance d’une optimisation conjointe des paramètres opératoires pour améliorer la performance du pelletiseur et la qualité des granulés produits.
Mots clés : Pelletiseur de provende, Rendement de production, Régression linéaire, PressionKeywords
Full Text:
PDFReferences
Food and Agriculture Organization (FAO). (2012). Pelleting process: feed pelleting guide.FAO.
Thomas, M., & van der Poel, A. F. B. (2020). Physical quality of pelleted animal feed 3: Contribution of process conditions. Animal Feed Science and Technology, 262, 114388.
Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., & Henriksen, U. B. (2012). Recent developments in biomass pelletization– A review. Bioresource Technology, 121, 15–25.
Montgomery, D. C. (2017). Design and Analysis of Experiments (9th ed.). John Wiley & Sons.
AOAC International. (2019). Official Methods of Analysis of AOAC International (21st ed.). AOAC International.
Herimanoa, R. M, 2025, Approche intégrée de formulation de provende et prédiction durendement laitier par régression multiple, International Journal of Progressive Sciences and Technology, Vol. 52 No. 2 September 2025, pp. 310-329
Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706.
Zhao, Y., Chen, L., & Chen, Y. (2019). Influence of roller and die parameters on pellet quality in ring die pellet mills. Renewable Energy, 132, 1248–1257
Kaliyan, N., & Morey, R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359.
Johnson, K. L. (1985). Contact Mechanics. Cambridge University Press.
Stachowiak, G. W., & Batchelor, A. W. (2013). Engineering Tribology (4th ed.). Butterworth-Heinemann.
Nielsen, N. P. K., Gardner, D. J., & Poulsen, T. (2009). Importance of pressure and temperature in densification of biomass briquettes.Wood Science and Technology, 43(3), 487–500.
Faborode, M. O., & O'Callaghan, J. R. (1989). A rheological model for dry compaction of fibrous materials. Journal of Agricultural Engineering Research, 42(2), 165–178.
Draper, N. R., & Smith, H. (1998). Applied Regression Analysis (3rd ed.). New York, NY: Wiley
Gujarati, D. N., & Porter, D. C. (2020). Basic Econometrics (6th ed.). New York, NY: McGraw-Hill Education
Guyader A., 2013, Régression linéaire, cours de Master en statistique, Université Rennes 2, France
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis (6th ed.). Hoboken, NJ: Wiley
Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied Linear Regression Models (4th ed.). New York, NY: McGraw-Hill/Irwin.
Azaïs, J.-M., & Bardet, J.-M., 2006, Le modèle linéaire par l’exemple : Régression, analyse de la variance et plansd’expérience, Toulouse, Dunod.
Bernard Delyon, 2022, Régression, cours de la deuxième année de Master, IRMAR, Université Rennes I, Campus de Beaulieu, 35042 Rennes cédex
Seber, G. A. F., & Lee, A. J. (2012). Linear Regression Analysis (2nd ed.). Hoboken, NJ: Wiley.
Draper, N. R., & Smith, H. (2014). Applied Regression Analysis (3rd ed.). John Wiley & Sons.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning.
ASABE (2017). ASAE S269.4: Cubes, Pellets, and Crumbles – Definitions and Methods for Determining Density, Durability, and Moisture Content. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
Gilpin, A. S., Dozier, W. A., & Corzo, A. (2002). Effect of pellet quality on feed intake and growth performance of poultry. Poultry Science, 81(8), 1232–1238.
Montgomery, D. C., & Runger, G. C. (2014). Applied Statistics and Probability for Engineers (6th ed.). John Wiley & Sons.
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied Linear Statistical Models (5th ed.). McGraw-Hill Irwin.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments (4th ed.). John Wiley & Sons.
Montgomery, D. C. (2019). Design and Analysis of Experiments (10th ed.). John Wiley & Sons.
Evans, C. E., Paulk, C. B., Gebhardt, J. T., et al. (2021). Effects of conditioning temperature and pellet mill die speed on pellet quality and relative stabilities of phytase and xylanase.Translational Animal Science.
Hoover, A. N. (2014). Effects of pelleting process variables on physical properties of pellets. Journal / source (2014).
Thomas, M., van Zuilichem, D. J., & van der Poel, A. F. B. (1997). Physical quality of pelleted animal feed 3. Contribution of feedstuff components. Animal Feed Science and Technology, 67(2–3), 221–237.
Lyu, X., Li, W., Zhang, X., & Chen, Y. (2020). Effects of pellet diameter on feed intake and growth performance of dairy cows. Animal Nutrition, 6(4), 447–454.
Adapa, P., Tabil, L., & Schoenau, G. (2009). Compaction characteristics of barley, canola, oat and wheat straw. Biosystems Engineering, 104(3), 335–344.
Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets. Biomass and Bioenergy, 30(7), 648–654.
Stelte, W., Holm, J. K., Sanadi, A. R., Barsberg, S., Ahrenfeldt, J., & Henriksen, U. B. (2012). A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy, 35(2), 910–918.
Carone, M. T., Pantaleo, A., & Pellerano, A. (2011). Influence of process parameters and biomass characteristics on the durability of pellets. Biomass and Bioenergy, 35(1), 402–410.
Samuelsson, R., Larsson, S. H., Thyrel, M., & Lestander, T. A. (2012). Moisture content and storage time influence the binding mechanisms in biofuel pellets. Applied Energy, 99, 109–115.
Tumuluru, J. S. (2014). Effect of process variables on the density and durability of biomass pellets from corn stover and switchgrass. BioEnergy Research, 7(2), 566–579.
DOI: http://dx.doi.org/10.52155/ijpsat.v54.1.7665
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rado Mihamina Herimanoa

This work is licensed under a Creative Commons Attribution 4.0 International License.

















