Β-TCP Synthesis Using Calcium From Calcined Paphia Undulata Shells
Abstract
β-Tricalcium phosphate (β-TCP) is a promising ceramic biomaterial for bone tissue engineering due to its enhanced biodegradability and osteoconductivity compared to hydroxyapatite. This study synthesized β-TCP using a natural calcium source—Batik clam shells (Paphia undulata)—via precipitation followed by calcination (900°C, 8 hours). XRD analysis confirmed the formation of β-TCP (67.9%) with a trigonal structure (*a* = 10.4352 Å, *c* = 37.4029 Å), alongside β-calcium pyrophosphate (β-Ca₂P₂O₇; 32.1%), attributed to incomplete thermal conversion. SEM revealed agglomerated β-TCP particles (0.5–1.5 µm) with a rough surface morphology. The results highlight the viability of Batik clam shells as a sustainable calcium source for β-TCP synthesis, though further optimization is required to achieve higher phase purity and morphological uniformity. This work advances the development of locally derived biomaterials for biomedical applications.
Keywords
Full Text:
PDFReferences
Dorozhkin, S. V. (2007). Calcium orthophosphates. Journal of Materials Chemistry, 17(30), 3045–3067.
Bohner, M. (2010). Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, 41, S8–S13.
Daculsi, G. (2009). The use of absorbable calcium phosphate ceramics for bone defect filling and bone tissue engineering. Key Engineering Materials, 396–398, 23–28.
Yang, S., Zhang, W., & Feng, C. (2011). Synthesis of β-tricalcium phosphate powders by wet precipitation method. Materials Letters, 65(13), 1957–1959.
Raynaud, S., Champion, E., & Bernache-Assollant, D. (2002). Calcium phosphate apatites with variable Ca/P atomic ratio: Synthesis and thermal stability. Biomaterials, 23(1), 193–202.
Susanti, D., & Pradana, R. A. (2018). Synthesis of β-Tricalcium Phosphate from Green Mussel Shell (Perna viridis) as Calcium Source for Bone Graft. Materials Science Forum, 931, 377–381.
Lestari, D. A., & Setyarini, Y. (2019). Sintesis β-Tricalcium Phosphate dari Cangkang Kerang Ranga sebagai Kandidat Biomaterial Implan Tulang [Synthesis of β-TCP from Rangga Clam Shells as Bone Implant Biomaterial Candidates]. Jurnal Rekayasa Proses, 13(2), 101–108.
Rahayu, M., Setiawan, A., & Sumardi. (2020). Synthesis and Characterization of β-Tricalcium Phosphate from Pearl Oyster Shell. IOP Conference Series: Materials Science and Engineering, 833(1), 012015.
Sari, D. P., Indrati, R., & Hartati, S. (2017). Sintesis Hidroksiapatit dari Cangkang Telur Ayam dengan Metode Presipitasi [Hydroxyapatite Synthesis from Chicken Eggshells via Precipitation Method]. Jurnal Bahan Alam Terbarukan, 6(1), 1–8.
Al-Noamani, Z., & Al-Marsoomi, M. M. (2019). Preparation and Characterization of Hydroxyapatite from Natural Limestone. Journal of Engineering and Applied Sciences, 14(14), 4811–4816.
Ramli, M. N., Mohamed, N., & Abdullah, M. Z. (2015). Synthesis of Hydroxyapatite from Natural Coral. Journal of the Australian Ceramic Society, 51(2), 173–177.
Suseno, T., Nisa, S. K., & Pratiwi, D. D. (2021). Characterization of Calcium Oxide (CaO) Derived from Paphia undulata Shell through Calcination Method. IOP Conference Series: Earth and Environmental Science, 871(1), 012038.
TenHusein, K. S., & Brown, P. W. (1999). Phase evolution during the formation of α-tricalcium phosphate. Journal of the American Ceramic Society, 82(11), 2813–2818.
Alrefeai, M. H., Alhamdan, E. M., Al-Saleh, S., Alqahtani, A. S., Al-Rifaiy, M. Q., Alshiddi, I. F., ... & Abduljabbar, T. (2021). Application of β-Tricalcium Phosphate in Adhesive Dentin Bonding. Polymers, 13(17), 2972.
DOI: http://dx.doi.org/10.52155/ijpsat.v52.1.7372
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nya Daniaty Malau

This work is licensed under a Creative Commons Attribution 4.0 International License.