Functional Qualification Comparison Studies between the Preferentially Selected OPC and PPC Cements Produced in Nepal

Anant Babu Marahatta, Puspa Kamal Dahal

Abstract


One of the most eminent building composites used ubiquitously in diverse engineering arenas is concrete; a reinforced admixture comprising with the definite amount cements, aggregates, water, minerals, and many other supplementary cementitious materials. Among these ingredients, the quite indispensable one that vows to dispense exceptional hardening strengths and conformational stabilities with notable weather resiliencies is cement. Owing to its versatile clinker phases, severe kiln processes, and unequal temporal hydration/rehydration affinities leading to the production of discretely functioning chemical derivatives, the entire commercial markets across the globe consume its brands primarily as OPC and PPC. The exclusive reasons behind their variable hydration, plasticity, gluing, agglomerating, setting, hardening, and enduring potencies that are disclosed comprehensively via the spectroscopic microstructural assessment procedures still become a great dearth of evidences. This contribution utmost aims to address all these functional inequalities and dissimilar workability aptitudes of the OPC & PPC cement grains by accessing to their generic crystallite phases and microstructural coherent domains through XRD and FTIR spectroscopic means. The careful probing of the X-ray diffraction angles, scattering bands, basal spacing (d-space), band intensity & interferences superposition regimes, symmetry & spatial distribution range, net integral area & FWHM, crystallites sizes (  & growth propensities, and number density of the closely stacked layers & edge plane thickness exemplify their disproportionate founding phases featuring the different packing ratio & interatomic layers crosslinking force, crystal defects & disorderliness, compressive & tensile strains, conglomeration cum grain size evolutions rates, adsorbing sites & exposable surface areas, etc. And, the rigorous judgements of the IR vibration bands and fingerprint regions deduce all those characteristic phases and their chemical moieties explicitly. These spectral interpretations not only declare their unalike functionalizing qualifications and cementitious features but also assure unidentical dissolution rates, hydration propensities, plasticity properties, and all the aftermath stiffening chemistries. We believe this insightful comparative analyses would be the leading industrial guidelines & consumer doctrines mainly for upgrading the specific cement brands & accreditations commercially.

Keywords


Spectroscopy, Crystallite phases, Crystal defects, Grain sizes, Adsorption site/area

Full Text:

PDF

References


. P. K. Mehta, P. J. Monteiro, Concrete: Microstructure, Properties, and Materials (McGraw-Hill Education; 2013).

. S. H. Kosmatka, B. Kerkhoff, W. C. Panarese, Design and Control of Concrete Mixtures (5420 Old Orchard Road Skokie, Illinois; 2008).

. A. M. Neville, Properties of Concrete (Pearson Education; 2011).

. T. Staněk, P. Sulovský, M. Boháč, Cem. Concr. Res., 92, 21(2017).

. C. Mounira, J. Cem. Based Compos., 1, 7(2021).

. (a) K. Prasain, Nepal will require 26 million tonnes of cement annually by 2024-25, The Kathmandu Post, 2021. Available online: https://kathmandupost.com/money/ 2021/05/21/nepal-will-require-26-million-tonnes-of-cement-annually-by-2024-25-report-says#:~:text=Krishana%20Prasain&text=Nepal%20is%20estimated%20to%20require,Rastra%20Bank%20on%20Friday%20showed (accessed on 3/24/2025).

a. (b) Nepal become self-reliant in clinker, Khabarhub, 2019. Available: https://english. khabarhub.com/2019/09/53872/ (accessed on 3/24/2025).

. Top 12 Nepali Cement Brands 2024, 2024. Available online: https://insightsnp.com/top-12-nepali-cement-brands-2023/ (accessed on 3/24/2025).

. (a) Nepal cement worth 170 million exported, Rastrita Samachar Samiti, 2023. Available online:https://nepalnews.com/s/business/nepal-cement-worth-170-million-exported#:~:te xt=Two%20Nepali%20cement%20industries%20have,cement%20since%20October%2017%2C%202022 (accessed on 3/24/2025).

(b) D. Paudel, Increase in cement exports raises hope in Nepal’s foreign trade, Myrepublica Nagariknews, 2024. Available: https://myrepublica.nagariknetwork.com/news/increase-in-cement-exports-raises-hope-in-nepal-s-foreign-trade/ (accessed on 3/24/2025).

(c) Nepal (Imports and Exports): Trade Economy. Available online: https://trendeconomy. com/data/h2/Nepal/6810) (accessed on 3/24/2025).

(d) Once a heavy cement importer, Nepal is now an emerging exporter. Available online: https://ansuinvest.com/research-opinion/view/nepal-once-a-heavy-cement-importer-is-now-an-emerging-cement-exporter115 (accessed on 3/24/2025).

. P. R. Pandey, N. Banskota, Bul. Dep. Geol. Trib. Univ., 11, 71(2000).

. P. Banstola, K. K. Shrestha, I. Thapa, A. K. Mishra, Int. J. App. Eng. and Management. Lett. 5(2), 26(2021).

. Department of Geology and Mines, Nepal. Feasibility of clays in Nepal for use in Limestone Calcined Clay Cement (LC). Available: chrome-extension:// efaidnbmnnnibpcajpcglclefindmkaj/https://www.tara.in/assets/pdf/blue-white-modern-profesional-business-flyer.pdf (accessed on 3/24/2025).

. (a) R. Maskey, Energy Use in Nepalese Cement Industries: Case of Udayapur Cement Industries Limited, 2016. Available: https://www.academia.edu/68371430 (accessed on 3/24/2025)

a. (b) Ordinary Portland cement market size & share analysis - growth trends & forecasts up to 2030. Available: https://www.mordorintelligence.com/industry-reports/global-ord inary-portland-cement-market (accessed on 3/24/2025)

. (a) Ordinary Portland cement (OPC) Market Size and Forecast. Available: https://www.verifiedmarketresearch.com/product/ordinary-portland-cement-opc-market/ (accessed on 3/24/2025)

(b) Blended Cement Market to Reach $462.1 Billion, Globally, by 2031 at 4.2% CAGR: Allied Market Research. Available: https://www.prnewswire.com/news-releases/blended-cement-market-to-reach-462-1-billion-globally-by-2031-at-4-2-cagr-allied-market-research-301767856.html (accessed on 3/24/2025)

. A. Jayaswal, Int. Res. J. Mod. Eng. Tech. Sci., 3(3), 871(2021).

. R. L. Amhudo, T. T. Raka, I. G. Putu, Civil Eng. Journal, 4(8), 1760(2018).

. J. H. Bhatt, P. D. Prajapati, Khalak A. Abarar, P. J. Mehul, Intl. J. Res. Pub. Rev. 4(12), 1105(2023).

. M. Berra, T. Mangialardi, A. E. Paolini, Adv. Mat. Sci. Eng. 4853141, 1(2018).

. A. Singh, S. Gupta, J. Singh, N.P Singh, Int. J. Res. Eng. Tech., 4(5), 60(2015).

. R. Vedalakshmia, A. Sundara Rajb, S. Srinivasana, K. G. Babu, Thermochimica Acta 407, 49(2003).

. M. Y. A. Mollah, M. Kesmez, D. L. Cocke, Sci. Total Environ., 262, 25(2004).

. M. Y. A. Mollah, F. Lu, D. L. Cocke, Sci. Total Environ., 224, 57(1998).

. L. A. Silva, B. O. Nahime, E. C. Lima, J. L. Akasaki, I. C. Reis, Cerâmica, 66(380) 373(2020).

. A. B. Marahatta, G. Baral, K. Dhital, International Journal of Progressive Sciences and Technologies, 45(2), 01(2024).

. N. N. Kencanawati, S. Rawiana, N. P. R. Darmayanti, Aceh Int. J. Sci. Tech., 9(1), 40(2020).

. J. I. Langford, J. C. Wilson, J. App. Cryst., 11, 102(1978).

. D. M. Smilgies, J. App. Cryst., 42, 1030(2009).

. National Research Council, National Academy of Sciences, National Academy of Engineering. Guide to compounds of interest in cement and concrete research, 1972 (pp. 1-63). Available online: https://onlinepubs.trb.org/Onlinepubs/sr/sr127.pdf (accessed on 3/24/2025).

. E. T. Carlson, Some Properties of the Calcium Aluminoferrite Hydrates, Building Research Division, Institute of Applied Technology, U. S. Department of Commerce, National Bureau of Standards, Washington, D.C. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://nvlpubs.nist.gov/nistpubs/Legacy/BSS/nbsbuildingscience6.pdf (accessed on 3/24/2025).

. G. Baral, A. B. Marahatta, Asian J. Appl. Chem. Res., 14(4), 34(2023).

. A. B. Marahatta, P. K. Dahal, International Journal of Progressive Sciences and Technologies, 46(2), 83(2024).

. S. Condurache-Bota, C. Gheorghies, A. P. Rambu, A. M. Cantaragiu, Annals of the “Dunărea de Jos” University of Galaţi – Fascicle ii, 142(2009).

. F. Girgsdies, Peak Profile Analysis in X-ray Powder Diffraction. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fhi.mpg.de/1075438/frank_girgsdies__peak_profile_fitting_in_xrd__151106.pdf (accessed online: 3/24/2025).

. R. K. Mishra, R. J. Flatt, H. Heinz. Phys. Chem. C, 117(20), 10417(2013).

. V. Lilkov, O. Petrov, D. Kovacheva, I. Rostovsky, Y. Tzvetanova, V. Petkova, N. Petrova, Constr. Build. Mater., 124, 838(2016).

. Baxter S, United States Patent Application US 2014/0224156A1; 2014. Available online: https://patentimages.storage.googleapis.com/96/5a/fb/da13658a1555e3/US9056791.pdf (accessed on 3/24/2025).

. J. D. Waghmare, S. S. Pati, S. M. Patil, M. M. Maske, ASEAN J. Sci. Engg., 1(1), 13(2021).

. S. Meng, X. Ouyang, J. Fu, Y. Niu, Y. Ma, Nanotechnol. Rev., 10, 768(2021).

. P. E. Stutzman, P. Feng, J. W. Bullard, J. Res. Nat. Inst. Stand. Tech., 121, 47(2016).

. G. Artioli, J. W. Bullard, Cryst. Res. Technol. 48(10), 903(2013).

. R. Pellenq, N. Lequeux, H. V. Damme, Cem. Concr.Res.,38(2),159(2008).

. L. Badurina, B. Segvic, O. Mandic, G. Zanoni, Minerals, 10(10), 899(2020).

. P. Głuchowski, R. Tomala, D. Kujawa, V. Boiko, T. Murauskas, P. Solarz, J. Phys. Chem. C, 126(16), 7127(2022).

. L. F. Carrasco, D. T. Martín, L.M. Morales, S. M. Ramírez, Infrared Spectroscopy-Analysis of Building and Construction Materials, 370-381(Intechopen, Rijeka; 2012).




DOI: http://dx.doi.org/10.52155/ijpsat.v50.1.7102

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Anant Babu Marahatta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.