Leveraging Machine Learning for Crop Disease Detection and Prediction in African (Nigerian) Agriculture
Abstract
Keywords
Full Text:
PDFReferences
Economics (2018). Policy Paper on Transforming Smallholder Farming to Modern Agriculture in Uganda. National Planning Authority. Available online at: https://www.semanticscholar.org/paper/Policy-Paper-On-TRANSFORMING-SMALLHOLDERFARMING-TO/a3cf6b6ec1942857bf124d9a2da14614cddcc356
Barbosa, J. Z., Prior, S. A., Pedreira, G. Q., Motta, A. C. V., Poggere, G. C., and Goularte, G. D. (2020). Global trends in apps for agriculture. Multi Sci. J. 3, 16–20. doi: 10.33837/msj.v3i1.1095
Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., and Pasupuleti, V. R. (2020). A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2, 100033. doi: 10.1016/j.jafr.2020.100033
Mendes, J., Pinho, T. M., Neves Dos Santos, F., Sousa, J., Peres, E., Cunha, J., et al. (2020). Smartphone applications targeting precision agriculture practices–a systematic review. Agronomy 10, 855. doi: 10.3390/agronomy10060855
Suvedi, M., and Kaplowitz, M. (2016).What Every Extension Worker Should Know: Core Competency Handbook. Michigan State University. p. 7
Patel, H., and Patel, D. (2016). Survey of android apps for agriculture sector. Int. J. Inf. Sci. Techn. 6, 61–67. doi: 10.5121/ijist.2016.6207
Monitor Uganda (2019). New App Diagnoses Crop Diseases. Available online at: https://www.monitor.co.ug/uganda/magazines/farming/new-app-diagnoses-cropdiseases-1847530
G.E. Hinton, S. Osindero, Y.W. The, A fast learning algorithm for deep belief nets Neural Comput., 18 (7) (2006), pp. 1527 1554, 10.1162/neco.2006.18.7.1527
I.H. Sarker, Machine learning: algorithms, real-world applications and research directions, SN Comput. Sci., 2 (3) (2021), p. 160, 10.1007/s42979-021-00592-x
S. Dargan, M. Kumar, M.R. Ayyagari, G. Kumar
A survey of deep learning and its applications: a new paradigm to machine learning, Arch. Comput. Methods Eng., 27 (2020), pp. 1071-1092, 10.1007/s11831-019-09344-w
K.M. Sudhesh, V. Sowmya, P.K. Sainamole, O.K. Sikha AI based rice leaf disease identification enhanced by dynamic mode decomposition Eng. Appl. Artif. Intell., 120 (2023),
S.V. Vasantha, S. Samreen, Y.L. Aparna, Rice disease diagnosis system (RDDS), Comput. Mater. Contin., 73 (1) (2022), 10.32604/cmc.2022.028504
R. Yakkundimath, G. Saunshi, B. Anami, S. Palaiah, Classification of rice diseases using convolutional neural network models, J. Inst. Eng. (India) Ser. B, 103 (4) (2022), pp. 1047-1059, 10.1007/s40031-021-00704-4
K. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis Machine learning in agriculture: a review, Sensors, 18 (8) (2018), p. 2674, 10.3390/s18082674
K.P. Panigrahi, H. Das, A.K. Sahoo, S.C. Moharana, Maize leaf disease detection and classification using machine learning algorithms Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2019, Springer, Singapore (2020), pp. 659-669, 10.1007/978-981-15-2414-1_66
L. Benos, A.C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, D. Bochtis Machine learning in agriculture: a comprehensive updated review Sensors, 21 (11) (2021), p. 3758, 10.3390/s21113758
V. Rajpoot, A. Tiwari, A.S. Jalal Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods Multimed. Tools Appl., 82 (23) (2023), pp. 36091-36117, 10.1007/s11042-023-14969-y
Annu Singla, Ashima Nehra, Kamaldeep Joshi, Ajit Kumar, Narendra Tuteja, Rajeev K. Varshney, Sarvajeet Singh Gill, Ritu Gill, Exploration of machine learning approaches for automated crop disease detection, Current Plant Biology, Volume 40, 2024, 100382, ISSN 2214-6628, https://doi.org/10.1016/j.cpb.2024.100382.
Mahmood ur Rehman, M., Liu, J., Nijabat, A., Faheem, M., Wang, W., & Zhao, S. (2024). Leveraging Convolutional Neural Networks for Disease Detection in Vegetables: A Comprehensive Review. Agronomy, 14(10), 2231. https://doi.org/10.3390/agronomy14102231
Samuel, Kavalga & Olamiti, A & Ayorinde, Ibiyinka. (2024). Crop Recommendation Analysis and Validation in Nigeria Using Machine Learning Algorithms. 11. 36 – 45.
Mahenge, M. P. J., Mkwazu, H., Sanga, C. A., Madege, R. R., Mwaipopo, B., & Maro, C. (2023). Artificial intelligence and deep learning based technologies for emerging disease recognition and pest prediction in beans (phaseolus vulgaris l.): A systematic review. African Journal of Agricultural Research, 19(3), 260-27
Akshatha & Shreedhara, Implementation of Machine Learning Algorithms for Crop Recommendation Using Precision Agriculture, 2018
Treboux & Genoud, 2018, Improved Machine Learning Methodology for High Precision Agriculture,
Briskin et al, 2015, Machine learning and data mining advance predictive big data analysis in precision animal agriculture1,
Bashir Sani, Bashir Sani, Sule Lamido, An Overview of Machine and Deep Learning Technologies Application in Agriculture: Opportunities and Challenges in Nigeria. University Journal of Science & Technology Vol. 4 No. 1&2 [July, 2022], pp. 84-96, https://doi.org/10.56471/slujst.v4i.273
Mughele, E. S., Okuyade, O. S, Abdullahi, I. M, Maliki, Dd and Duada I. A, Roles Of Iot, Big Data And Machine Learning In Precision Agriculture: a Systematic Review
DOI: http://dx.doi.org/10.52155/ijpsat.v48.1.6873
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dr. ANYARAGBU Hope, Dr. OKORIE Emeka
This work is licensed under a Creative Commons Attribution 4.0 International License.