Arduino-Based Low-Cost Battery Capacity Measurement Tool

Ranto RAJERINANDRIANINA, Eulalie RAFANJANIRINA

Abstract


This work presents the development of a new high-precision coulomb counting-based capacimeter. The goal was to provide a reliable, low-cost, portable, accessible, and user-friendly tool for non-professionals to accurately assess battery capacity. Results demonstrate that our slow discharge capacimeter offers precise and reproducible measurements of Li-ion battery capacity. This advancement opens new avenues for optimizing energy systems and selecting high-performance batteries.


Keywords


Arduino; Capacimeter; Battery; Microcontroller; Diagnostic; Low-Cost

Full Text:

PDF

References


Ahmadi, P., & Torabi, F. (2020). Simulation of battery systems: Fundamentals and applications. Academic Press.

Aloisio, D., Campobello, G., Leonardi, S. G., Sergi, F., Brunaccini, G., Ferraro, M., Antonucci, V., Segreto, A., & Donato, N. (2020). A machine learning approach for evaluation of battery state of health. In 24th IMEKO TC4 International Symposium 22nd International Workshop on ADC and DAC Modelling and Testing IMEKO TC-4 2020 (pp. 14-16). Palermo, Italy.

Australian Academy of Sciences. (n.d.). How a battery works. https://www.science.org.au/curious/technology-future/batteries

Australian Academy of Sciences. (n.d.). Lithium-ion batteries. https://www.science.org.au/curious/technology-future/lithium-ion-batteries

Drouet, H. (n.d.). Comment choisir une batterie : marques, génériques et contrefaçons [How to choose a battery] [Blog post]. https://www.luzphotos.com/herve-drouet-photographe

Figgener, J. (2023, December 14). The financial implications of inaccurate SOC in LFP batteries. [Blog post]. https://www.accure.net/battery-knowledge/lfp-soc-estimation-challenges.

Hosen, M. S., Jaguemont, J., Van Mierlo, J., & Berecibar, M. (n.d.). Battery lifetime prediction and performance assessment of different modeling approaches. iScience.

Maltezo, M. R. C., Thio-ac, A. C., Castillo, A. M. C., Gattu, L. E., Hernandez, C. E. A., Labuan, J. J. C., Navales, L. F., Sopeña, E. C., Arago, N. M., Galido, E. A., Madrigal, G. A. M., Pascion, C. G., & Tolentino, L. K. S. (2021). Arduino-based battery monitoring system with state of charge and remaining useful time estimation. International Journal of Advanced Technology and Engineering Exploration, 8(76). https://ssrn.com/abstract=3828898

Pascoe, P. E., & Anbuky, A. H. (2003). Automated battery test system. Measurement, 34(4), 325-345.

Roman, D., Saxena, S., Robu, V., et al. (2021). Machine learning pipeline for battery state-of-health estimation. Nature Machine Intelligence, 3, 447–456.

Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419-2430.

Wickramaarachchi, K., & Minakshi, M. (2022). Status on electrodeposited manganese dioxide and biowaste carbon for hybrid capacitors: The case of high-quality oxide composites, mechanisms, and prospects. Journal of Energy Storage, 56(C), 106099.

Zheng, L., et al. (2020). X- tomography for battery degradation analysis. Analytical Chemistry, 92(15), 10123-10131.




DOI: http://dx.doi.org/10.52155/ijpsat.v46.2.6627

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Eulalie Odilette RAFANJANIRINA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.