Complete Valorization Of Canna Indica: Biochar And Charcoal Briquette Production From Crop Residues And Distillation Waste

Eulalie RAFANJANIRINA, Anjoanina Elia RANDRIAMBAHOAKA, Jaolalaina ANDRIANAIVOARIVELO, Huchard Paul Berthin RANDRIANIRAINY, Zely Arivelo RANDRIAMANANTANY

Abstract


This study explores novel valorization pathways for Canna indica biomass, extending beyond traditional ethanol production. Through pyrolysis, we transformed non-conventional plant parts such as stems and leaves into charcoal and biochar, aligning with a circular economy approach. Despite having lower calorific value compared to traditional coal, our biochar offers significant environmental benefits, including carbon sequestration. Furthermore, Canna indica briquettes are easier to handle and store compared to conventional charcoal. Moreover, we innovated by utilizing distillation residues as a binder for briquette production, enhancing their physical properties. This multidisciplinary approach paves the way for sustainable energy production and environmentally friendly agriculture.

 


Keywords


Canna indica; Biomass valorization;Charcoal; Biochar; Carbon sequestration; Renewable energy.

Full Text:

PDF

References


. Allaire, S. E., Lange, S. F., Auclair, I., & Greffard, L. (2015). Analyses of biochar properties. Centre de Recherche sur les Matériaux Renouvelables. https://doi.org/10.13140/RG.2.1.2789.4241.

. Chandraju, S., Thejovathi, C., & Chidan Kumar, C. S. (2012). Distillery spentwash as an effective liquid fertilizer and alternative irrigation medium in floriculture. Research in Plant Biology, 2(3), 16-23.

. Chen, Y. et al. (2020). "Biochar production from agricultural residues: A review of methods and applications." Journal of Environmental Management, 267, 110652.

. Doda, S., & Sahu, O. (2022). Production of bioethanol from biomass (Marigold flower). Materials Processing, 48(5), 932-937. https://doi.org/10.1016/j.matpr.2021.05.309

. FAO. (1983). Briquettes de charbon de bois. In ÉTUDE FAO : FORÊTS 41. Sous-Division des produits de l'industrie mécanique du bois. Division des industries forestières. Département des forêts (M-37). Rome : Organisation des Nations Unies pour l'alimentation et l'agriculture.

. Guo, R., Qian, R., Naseer, M. A., Han, F., Zhang, P., Jia, Z., Chen, X., & Ren, X. (2024). Integrated straw-derived biochar utilization to increase net ecosystem carbon budget and economic benefit and reduce the environmental footprint. Field Crops Research, 307, 109247. https://doi.org/10.1016/j.fcr.2023.109247.

. Ji, C., Cheng, K., Nayak, D., & Pan, G. (2018). Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation. Journal of Cleaner Production, 192, 916-923. https://doi.org/10.1016/j.jclepro.2018.04.243.

. Kumar, A. & Singh, E. (2021). "Briquettes from agricultural waste: A sustainable approach to rural energy needs." Renewable and Sustainable Energy Reviews, 150, 111481.

. Kumar, J. A., Kumar, K. V., Petchimuthu, M., Iyahraja, S., & Vignesh Kumar, D. (2021). Comparative analysis of briquettes obtained from biomass and charcoal. Materials Today: Proceedings, 45(2), 857-861. https://doi.org/10.1016/j.matpr.2020.02.918.

. Kumar, V., Chowdhary, P., & Shah, M. P. (2021). Recent advances in distillery waste management for environmental safety (1st ed.). CRC Press (Taylor & Francis Group). ISBN : 9780367466015. https://doi.org/10.1201/9781003029885.

. Lončarić, R., Sudarić, T., & Jelić Milković, S. (June 2021). Circular economy and agricultural waste management in Croatia. Paper presented at the 10th International Scientific Symposium Region, Entrepreneurship, Development - REDAt, University of Osijek, Osijek, Croatia. Retrieved from

https://www.researchgate.net/publication/352679367_Circular_economy_and_agricultural_waste_management_in_Croatia.

. Mohana, S., Acharya, B., & Madamvar, D. (2008). Distillery spent wash: Treatment technologies and potential applications. Journal of Hazardous Materials, 163(1), 12-25. https://doi.org/10.1016/j.jhazmat.2008.06.079.

. Oliveira, J. F. & Santos, M. A. (2021). "The role of agricultural waste valorization in achieving sustainable development goals: A review." Sustainability, 13(4), 2345.

. Patel, M. R., & Panwar, N. L. (2023). Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resources, Conservation & Recycling Advances, 19, 200173. https://doi.org/10.1016/j.rcradv.2023.200173.

. Patel, R. K. & Mukherjee, S. (2023). "Bioethanol production from Canna indica rhizomes: Process optimization and waste valorization." Bioresource Technology, 368, 128192.

. Phadtare, P., & Kalbande, S. (2022). Biochar production technologies from agricultural waste, its utilization in agriculture and current global biochar market: A comprehensive review. International Journal of Environment and Climate Change, 12(11), 1010-1031. https://doi.org/10.9734/IJECC/2022/v12i1131078

. Prado-Acebo, I., Cubero-Cardoso, J., Lu-Chau, T. A., & Eibes, G. (2024). Integral multi-valorization of agro-industrial wastes: A review. Waste Management, 183, 42-52.

. Putman, E. W., & Hassid, W. Z. (1954). Sugar transformation in leaves of Canna indica. Journal of Biological Chemistry, 207(2), 885-902.

. Rekha, Y. G., & Vijayalakshmi, S. (2018). Production and optimization techniques of bioethanol from withered flowers of Allamanda schottii L. by activated dry yeast. Journal of Pure and Applied Microbiology, 12(2), 943-952. https://doi.org/10.22207/JPAM.12.2.57

. Rodrigues, L. & Nunes, C. (2022). "Characterization and potential applications of biochar derived from Canna indica residues." Waste and Biomass Valorization, 13(8), 3645-3657.

. Shah, V., Gajbhiye, P., Mehta, J., Tudu, B., Sillanpaa, M., Siddiqui, M. I. H., Kumar, A., & Shah, M. A. (2024). Effectiveness of Canna indica leaves and stalk biochar in the treatment of textile effluent. AIP Advances, 14, 035227. https://doi.org/10.1063/5.0191708.

. Sharma, S., Asolekar, S. R., Thakur, V. K., & Asokan, P. (2023). Valorization of cellulosic fiber derived from waste biomass of constructed wetland as a potential reinforcement in polymeric composites: A technological approach to achieve circular economy. Journal of Environmental Management, 340, 117850. https://doi.org/10.1016/j.jenvman.2023.117850.

. Singh, R., Kumar, R., Bhardwaj, U. (2023). Sustainable Manufacturing: Road to Carbon Zero Footprints. In: Al Khaddar, R., Singh, S.K., Kaushika, N.D., Tomar, R.K., Jain, S.K. (eds) Recent Developments in Energy and Environmental Engineering. TRACE 2022. Lecture Notes in Civil Engineering, vol 333. Springer, Singapore. https://doi.org/10.1007/978-981-99-1388-6_26.

. Singh, Y. (2020). Distillery spent wash and its utilisation in agriculture (1st ed.). The Wealthy Waste School India. ISBN: 978-93-5396-249-4.

. Smith, J. & Brown, A. (2022). "Agricultural waste management: Challenges and opportunities in the circular economy." Journal of Sustainable Agriculture, 45(3), 234-250.

. Thompson, K. L. et al. (2022). "Economic and environmental assessment of biochar and briquette production from agricultural residues." Biomass and Bioenergy, 162, 106525.

. Vaneck Bot, B., Tamba, J. G., & Sosso Mayi, O. T. (2022). Assessment of biomass briquette energy potential from agricultural residues in Cameroon. Biomass Conversion and Biorefinery, 14(2), 1-13,

. Wang, X. et al. (2023). "Comparative study of biomass briquettes: Effects of raw materials and production processes on fuel properties." Energy, 264, 126035.

. Yamamoto, H. & Fujisawa, Y. (2023). "Innovative approaches to agricultural waste management in developing countries: A case study of Canna indica valorization." Waste Management & Research, 41(6), 821-835.




DOI: http://dx.doi.org/10.52155/ijpsat.v46.2.6553

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Eulalie Odilette RAFANJANIRINA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.