Parameterization Of Electrolysis For The Thickening Of Sludge From Wastewater Treatment Plant: Taguchi Method Approach
Abstract
The buildup of sludge is a significant issue for wastewater treatment facilities, and this study focuses on thickening it by electrolysis. The main objectives are to identify the factors influencing the sludge characteristics and to determine the optimal levels of these factors for efficient thickening. The Taguchi method with an L8(2^4) orthogonal array was used to conduct the tests, which showed that electrolysis is effective in thickening the sludge, as evidenced by the increase in dryness rate from 2.97% to 34.37% and the mass loss of 0.23 kg or 2.3%. Analyses of the carbon, chlorine, nitrogen, and sodium levels indicate that the process does not pose significant environmental risks. Minitab analysis identified the most influential factors: the electrolytic additive (NaOH) and the settling effect (without settling) for sludge thickening, the current intensity (12.6 A) for sludge quality, and the concentration of the electrolytic additive (0%) for energy consumption and electrolysis efficiency. This data is crucial for optimizing the electrolytic parameters, thereby enhancing the process efficiency and minimizing environmental and energy impacts.
Keywords
Full Text:
PDFReferences
La mosaïque nord-américaine : Aperçu des principaux enjeux environnementaux. Pollution et déchets industriels, 2005
J. Bansard, M. Schröder. L’exploitation durable des ressources naturelles : le défi de la gouvernance. Earth Negociations Bulletin, 2021, Dossier 16
A. K. Chopra, A. K. Sharma, V. Kumar. Overview of Electrolytic treatment: An alternative technology for purification of wastewater. Archives of Applied Science Research, 2011, 3 (5): 191-206
M. D’Arifat, V. Audibert, T. Rakotondrainibe, A. Magra. Rapport Étude d’Impact environnemental et Sociale – Rapport final. Accord-cadre pour le soutien des activités des services de conseil de la BEI (Banque Européenne d’Investissement) à l’intérieur et à l’extérieur de l’UE des 28. Étude préparatoire du projet AEP Antananarivo, 2019
A. Bhardwaj, S. Kumar, D. Singh. Tannery effluent treatment and its environmental impact: a review of current practices and emerging technologies. Water Quality Research Journal, 2023, Vol 58, No 2, 128-152. https://doi.org/10.2166/wqrj.2023.002
R. F. Mampitefa. Essai de paramétrage de l’électrolyse pour l’épaississement des boues des stations d’épuration. Mémoire de Master, Ecole Supérieure Polytechnique d’Antananarivo, Université d’Antananarivo, 2022
J. Rumky, A. Deb, M. J. Shim, E. Laakso, E. Repo. A review on the recent advances in electrochemical treatment technologies for sludge dewatering and alternative uses. Journal of Hazardous Materials Advances, 11, 2023. https://doi.org/10.1016/j.hazadv.2023.100341
S. Ouadah. Valorisation des boues résiduaires de la station d’épuration fr Tiaret pour l’agriculture. Thèse de doctorat, Faculté des Sciences et de la Nature de la Vie, Université Ibn Khaldoun-Tiaret, 2023
A. Kelessidis, A. S. Stasinakis. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management 32, 1186 – 1195, 2012. https://doi.org/10.1016/j.wasman.2012.01.012
. K. Vijayaraghavan, D. Ahmad, R. Lesa. Electrolytic Treatment of Beer Brewery Wastewater. Industrial & Engineering Chemistry Research, 2006, 4, 6854 – 6859. https://doi.org/10.1012/ie0604371
M. Jafari, G. G. Botte. Electrochemical treatment of sewage sludge and pathogen inactivation. Journal of Applied Electrochemistry, 2021;51:119–30. https://doi.org/10.1007/S10800-020-01481-6.
. N. Wu, X. Zhang, X. Zhang, Y. Li, X. Song, S. Wang. Electrochemical Processes for the Treatment of Hazardous Wastes Exemplified by Electroplating Sludge Leaching Solutions. Water 2021; 13:1576. https://doi.org/10.3390/w13111576
M.-A. Bureau. Stabilisation et traitement électrochimique des boues d’épuration municipales et industrielles. Mémoire de Master. Université du Québec, Institut national de la recherche scientifique, 2004.
Z. He, W. Han, X. Zhou, W. Jin, W. Liu, S. Gao, Z. Zhao, Y. Chen, G. Jiang. Effect of on-site sludge reduction and wastewater treatment based on electrochemical-A/O combined process. Water 2021; 13:941. https://doi.org/10.3390/w13070941
M. Siwek, T. Edgecock. Application of electron beam water radiolysis for sewage sludge treatment—a review. Environmental Science and Pollution Research 2020; 27:42424–48. https://doi.org/10.1007/s11356-020-10643-0
Z. M. Marlan, F. Ramlie, K. R. Jamaludin, N. Harudin. Enhanced Taguchi’s T-method using angle modulated Bat algorithm for prediction. Bulletin of Electrical Engineering and Informatics, Vol 11, No. 5, 2022, pp :2828–2835. https://doi.org/10.11591/eei.v11i5.4350
C. Hamzaçebi. Taguchi Method as a Robust Design Tool. IntechOpen, 2020. https://doi.org/10.5772/intechopen.94908
K. Kurata, K. Shimada, H. Takamatsu. Application of the Taguchi method to explore a robust condition of tumor-treating field treatment. PLOS ONE 17 (1): e0262133, 2022. https://doi.org/10.1371/journal.pone.0262133
S. Yadav, S. Chander, Neha, S. Kumari, Ankur, A. Gupta. Removal of Indigo Blue Dye Using Iron Oxide Nanoparticles– Process Optimization Via Taguchi Method. Oriental Journal of Chemistry 2023; 39:364–71. https://doi.org/10.13005/ojc/390215
S. N. Bansode, V. M. Phalle, S. Mantha. Taguchi Approach for Optimization of Parameters that Reduce Dimensional Variation in Investment Casting. Archives of Foundry Engineering 2018. https://doi.org/10.24425/afe.2018.125183
S. H. Karna, R. Sahai. An overview on Taguchi Method. International Journal of Engineering and Mathematical Sciences 2012, Vol 1, pp. 11-18.
M. Asselin. Utilisation de l’électrocoagulation dans le traitement des eaux usées industrielles chargées en matières organiques. Mémoire de Master, Institue Nationale de Recherche Scientifique Centre Eau, Terre et Environnement, Université de Québec, 2007
H. Xie, Y. Wang, T. Liu, Y. Wu, W. Jiang, C. Lan, Z. Zhao, L. Zhu, D. Yang. Electrochemical CO2 mineralization for red mud treatment driven by hydrogen-cycled membrane electrolysis. Chinese Journal of Chemical Engineering 2022; 43:14–23. https://doi.org/10.1016/j.cjche.2022.02.002
F. Rania, G. Djouhaina. Étude comparative de l’efficacité du traitement des eaux usées par boues activées et électrocoagulation. Mémoire de Master, Génie des Procédés, Université de Guelma, 2022
F. Ulu. Solidification of Tannery Sludge with Various Binders. MANAS Journal of Engineering 2022; 10:187–193. https://doi.org/10.51354/mjen.1159967
D. L. Villaseñor-Basulto, A. Picos-Benítez, M. Pacheco-Alvarez, T. Pérez, E. R. Bandala, J.M Peralta-Hermández. Tannery wastewater treatment using combined electrocoagulation and electro-Fenton processes. Journal of Environmental Chemical Engineering 2022; 10:107290–107290. https://doi.org/10.1016/j.jece.2022.107290
H.-K. Hwang, S.-J. Kim. Optimization of Electropolishing Process Using Taguchi Robust Design for UNS N08367 in a Mixed Solution of Sulfuric Acid and Phosphoric Acid. Coatings 2023; 13:312. https://doi.org/10.3390/coatings13020312
D. Fajarwati, D. S. Khaerudini. Taguchi-based design of experiments to optimize the parameters of Hydrogen-Hydrogen-Oxygen based welding. Sinergi 2022; 26:343–354. https://doi.org/10.22441/sinergi.2022.3.010.
S. S. Mahapatra, A. Patnaik. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi Method. International Journal of Advanced Manufacturing Technology 2006. https://doi.org/10.1007/s00170-006-0672-6
W. Yan, J. Wang, J. Li, G. Wang. Optimizing Structural Parameters of PEMFC Based on Taguchi Method. World Electric Vehicle Journal, 2023, 14, 76. https://doi.org/10.3390/wevj14030076
R. N. Abbas, A. S. Abbas. The Taguchi Approach in Studying and Optimizing the Electro-Fenton Oxidation to Reduce Organic Contaminants in Refinery Wastewater Using Novel Electrodes. Engineering Technology & Applied Science Research, Vol. 12, No. 4, 2022; 8928–8935. https://doi.org/10.48084/etasr.5091.
P. Schulz. Production d’hydrogène par électrolyse de l’eau – Application à des systèmes de petite capacité. L’Actualité Chimique, 2007
R. Asano, M. Ohkubo, Y. Nagata. Consideration of the Recognition Taguchi Method Using High-Dimensional Principal Component Analysis. Total Quality Science 2023; Vol 8, No. 2 :70–76. https://doi.org/10.17929/tqs.8.70
Analysis of Tribological Properties of Tin Powder Filled Polypropylene Composites with Taguchi Method. Polymer-Korea 2022, Vol. 46, No. 4, pp. 476–483. https://doi.org/10.7317/pk.2022.46.4.476
V. Kaushik, N. Shankar. Statistical Analysis using Taguchi Method for Designing a Robust Wind Turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2022; 100:92–105. https://doi.org/10.37934/arfmts.100.3.92105
L. Zhang. Optimization of asynchronous motor with Taguchi method based on Finite Element Analysis. MATEC Web of Conferences 2023, 382:01010. https://doi.org/10.1051/matecconf/202338201010
Byju’s. La loi de Kohlrausch. Chemistry articles. En ligne, https://byjus.com/chemistry/kohlrausch-law/ consulté le 12.07.2024
C. C. H. Diaz. Modélisation multi-physique et électrique d’un électrolyseur alcalin. Mémoire de Master, Université du Québec à Trois-Rivières, 2011
Centre d’expertise en analyse environnementale du Québec. Détermination de la conductivité : méthode électrométrique. Méthode d’Analyse, 2015
N. Faout. Récupération du chrome contenu dans les eux usées de tannerie par adsorption sur différents types de boues d’épuration. Mémoire de Master, INRS-Eau, Terre e Environnement, Université du Québec, 2006
A. Vassart. Gestion des déchets – Caractéristiques et danger des déchets. Bruxelles environnement, Module 2A. En ligne, https://environnement.brussels/sites/default/files/pres_module2a_fr_gestiondesdechets.pdf consulté le 21.06.2024
F. Bouhbel, L. Seghir. Calage du modèle de Mohr coulomb, en utilisant la méthode d’optimisation de Taguchi. Mémoire de Master, Faculté des Sciences et de la Technologie, Université de Guelma, 2020
F. Z. Derdour, M. Kezzar, L. Khochemane. Application de la méthode de Taguchi pour l’étude de l’influence des paramètres de réglages sur l’efficacité de fonctionnement d’une machine de forage. Third International Conference on Energy, Materials, Applied Energetics and Pollution, 2016
DOI: http://dx.doi.org/10.52155/ijpsat.v46.1.6508
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 ANDRIAMANAMPISOA TSIRY ANGELOS
This work is licensed under a Creative Commons Attribution 4.0 International License.