Review of Ballistic resistance Technology as Individual Body Armor in Military and Security Applications

Sholahuddin Asy-Syamil, Yayat Ruyat, Y.H. Yogaswara

Abstract


This research examines ballistic resistance technologies in the context of military and law enforcement to counter the threat of firearms and explosive devices. The focus is on analyzing the various materials used in ballistic resistance protection, such as Kevlar, Dyneema, and ceramics, as well as recent innovations such as thickening fluids (STF) and nanomaterials. The research also explored key challenges in the development of ballistic resistance technologies, including protection weight, manufacturing costs, and enhancing weapon firepower. The conclusions of this study emphasize that the development of ballistic resistance technologies requires continuous research and innovation to overcome these challenges. Future trends such as the use of nanotechnology and eco-friendly materials promise lighter and stronger solutions. The results of this study are expected to provide useful insights for policymakers, military equipment designers, and law enforcement.

Keywords


Technology, Ballistic Resistances, Materials, Innovation

Full Text:

PDF

References


. Abtew, M. A., Boussu, F., & Bruniaux, P. (2021). Dynamic impact protective body armour: A comprehensive appraisal on panel engineering design and its prospective materials. Defence Technology, 17(6), 2027–2049. https://doi.org/10.1016/j.dt.2021.03.016

. Agrawal, B. J. (2011). High performance textiles for ballistic protection. 2011 Defense Science Research Conference and Expo, DSR 2011, 001, 1–4. https://doi.org/10.1109/DSR.2011.6026857

. David, N. V., Gao, X. L., & Zheng, J. Q. (2009). Ballistic resistant body armor: Contemporary and prospective materials and related protection mechanisms. Applied Mechanics Reviews, 62(5), 1–20. https://doi.org/10.1115/1.3124644

. Material, J. R., Energi, M., Miwazuki, S. A., Anisa, P., & Rustama, R. Z. (2024). FT-UMSU FT-UMSU. 7(1), 120–126.

. Maulana, F., Prabowo, A. R., Ridwan, R., Ubaidillah, U., Ariawan, D., Sohn, J. M., Muhayat, N., Tjahjana, D. D. D. P., & Do, Q. T. (2023). Antiballistic material, testing, and procedures of curved-layered objects: A systematic review and current milestone. Curved and Layered Structures, 10(1). https://doi.org/10.1515/cls-2022-0200

. Maulana, F., Ubaidilah, Lenggana, B. W., & Ariawan, D. (2023). Enchanching Body Armor: Evaluating UHMWPE with Contoured Surfaces for Improved Ballistic Resistance Performance using Finite Element Methods. E3S Web of Conferences, 465. https://doi.org/10.1051/e3sconf/202346501005

. Strelko, O., & Horban, A. (2023). Analysis of the history of creation and improvement of personal protective equipment: from bronze armor to modern bulletproof vests. History of Science and Technology, 13(1), 201–222. https://doi.org/10.32703/2415-7422-2023-13-1-201-222

. Wu, S., Sikdar, P., & Bhat, G. S. (2023). Recent progress in developing ballistic and anti-impact materials: Nanotechnology and main approaches. Defence Technology, 21, 33–61. https://doi.org/10.1016/j.dt.2022.06.007

. Sen, F., et al. (2018). "Review on Hybrid Fiber-Reinforced Polymer Composites." Polymers, 10(6), 622. doi:10.3390/polym10060622

. Zhang, X., et al. (2020). "Improved ballistic performance of hybrid polymer composites." Journal of Composite Materials, 54(3), 349-361. doi:10.1177/0021998319877576

. Fink, B.K. (2014). "Ballistic Performance of Composite Structures." Composite Structures, 108, 151-163. doi:10.1016/j.compstruct.2013.06.020

. Medvedovski, E. (2010). "Ballistic performance of armor ceramics: Influence of design and structure. Part 1." Ceramics International, 36(7), 2103-2115. doi:10.1016/j.ceramint.2010.05.015

. Zenkert, D. (2017). "The Mechanical Performance of Composite Sandwich Structures." Journal of Sandwich Structures & Materials, 19(1), 3-12. doi:10.1177/1099636216686047

. Smith, E.C., et al. (2016). "Design and Manufacturing of Composite Sandwich Structures." Composite Structures, 139, 1-16. doi:10.1016/j.compstruct.2015.12.038

. Lee, Y.S., & Wetzel, E.D. (2003). "Enhanced ballistic performance using shear thickening fluids." Journal of Materials Science, 38(13), 2825-2833. doi:10.1023/A:1024424200221

. Majumdar, A., et al. (2008). "Application of shear thickening fluid in ballistic and stab protection." Journal of Composite Materials, 42(24), 2731-2746. doi:10.1177/0021998308094824

. Faruk, O., et al. (2012). "Biocomposites reinforced with natural fibers: 2000–2010." Progress in Polymer Science, 37(11), 1552-1596. doi:10.1016/j.progpolymsci.2012.04.003




DOI: http://dx.doi.org/10.52155/ijpsat.v45.2.6416

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sholahuddin Asy-Syamil

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.