The Real Time Flipping Dynamics Studies of Dipolar Diflourophenylene Rotator (Compass Needle) of Crystalline Siloxaalkane Molecular Compass
Abstract
Full Text:
PDFReferences
. Marahatta AB. GaussianExternal Methodology Predicted Crystal Structures, Molecular Energetics, and Potential Energy Surface of the Crystalline Molecular Compass. Asian Journal of Applied Chemistry Research. 2023; 14(1):825.
. Available: https://journalajacr.com/index.php/AJACR/article/view/255
. Marahatta AB. Performance Evaluation of DFTB1 and DFTB2 Methods in Reference to the Crystal Structures and Molecular Energetics of Siloxaalkane Molecular Compass. International Journal of Progressive Sciences and Technologies. 2023; 14(1):1231.
. Available: https://ijpsat.org/index.php/ijpsat/article/view/5631
. Balzani V, Venturi M, Credi A. Molecular Devices and machines: A Journey into the Nano World; Wiley-VCH: Weinheim, Germany, 2003.
. Kelley TR. Molecular Machines. Topics in Current Chemistry, Springer, Berlin, Heidelberg, New York, 2005.
. Dominguez Z, Dang H, Strouse MJ, Garcia-Garibay MA. Molecular "compasses" and "gyroscopes." III. Dynamics of a phenylene rotor and clathrated benzene in a slipping-gear crystal lattice. Journal of American Chemical Society. 2002; 124(26):77197727.
. Available: https://pubmed.ncbi.nlm.nih.gov/12083925/
. Horansky RD, Clarke LI, Price JC, Karlen SD, Jarowski PD, Santillan R, Garcia-Garibay MA. Dipolar rotor-rotor interactions in a difluorobenzene molecular rotor crystal. Physical Review B. 2006; 74:054306(112).
. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.74.054306
. O’Brien ZJ, Natarajan A, Khan S, Garcia-Garibay MA. Synthesis and Solid-State Rotational Dynamics of Molecular Gyroscopes with a Robust and Low Density Structure Built with a Phenylene Rotator and a Tri(meta-terphenyl)methyl Stator. Crystal Growth & Design. 2011; 11(6): 26542659.
. Available: https://pubs.acs.org/toc/cgdefu/11/6
. Setaka W, Ohmizu S, Kabuto C, Kira M. A Molecular Gyroscope Having Phenylene Rotator Encased in Three-spoke Silicon-based Stator. Chemistry Letters. 2007; 36(8), 10761077.
. Available: https://academic.oup.com/chemlett/article-abstract/36/8/1076/7386255?redirected From=fulltext
. Setaka W, Ohmizu S, Kira M. Molecular Gyroscope Having a Halogen-substituted p-Phenylene Rotator and Silaalkane Chain Stators. Chemistry Letters. 2010; 39(5), 468469.
. Available: https://academic.oup.com/chemlett/article/39/5/468/7387984
. Setaka W, Yamaguchi K. Thermal modulation of birefringence observed in a crystalline molecular gyrotop. The Proceedings of the National Academy of Sciences. 2012; 109(24), 92719275.
. Available: https://www.pnas.org/doi/full/10.1073/pnas.1114733109
. Akimov AV, Kolomeisky A. Dynamics of Single-Molecule Rotations on Surfaces that Depend on Symmetry, Interactions, and Molecular Sizes. Journal of Physical Chemistry C. 2011; 115(1), 125131.
. Available: https://pubs.acs.org/doi/abs/10.1021/jp108062p
. Marahatta AB, Kanno M, Hoki K, Setaka W, Irle S. Theoretical Investigation of the Structures and Dynamics of Crystalline Molecular Gyroscopes. Journal of physical chemistry C. 2012; 116, 4845−24854.
. Available:https://journals.scholarsportal.info/details/19327447/v116i0046/24845tiotsadocmg.xml
. Marahatta AB, Kono H. Comparative Theoretical Study on the Electronic Structures of the Isolated Molecular Gyroscopes with Polar and Nonpolar Phenylene Rotator. International Journal of Progressive Sciences and Technologies. 2020; 20(1):109122.
. Available: https://ijpsat.org/index.php/ijpsat/article/view/1716
. Marahatta AB, Kono H. SCCDFTB Study for the Structural Analysis of Crystalline Molecular Compasses. Chemistry Research Journal. 2022; 7(4):7794.
. Available:chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://chemrj.org/downlo ad/vol-7-iss-4-2022/chemrj-2022-07-04-77-94.pdf
. Marahatta AB, Kono H. Structural Characterization of Isolated Siloxaalkane Molecular Gyroscopes via DFTB-based Quantum Mechanical Model. International Journal of Progressive Sciences and Technologies. 2021; 26(1):526541.
. Available: https://ijpsat.org/index.php/ijpsat/article/view/2950
. Marahatta AB. DFTB1 and DFTB2 Based RealTime Flipping Motion Studies of Central Phenylene Rotator of Crystalline Siloxaalkane Molecular Gyroscope. International Journal of Progressive Sciences and Technologies. 2024; 42(2):1939.
. Available: https://ijpsat.org/index.php/ijpsat/article/view/5732/3700
. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E. Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. Journal of Chemical Physics. 2001; 114:51495155.
. Available:https://pubs.aip.org/aip/jcp/article-abstract/114/12/5149/183912/Hydrogen-bondi ng-and-stacking-interactions-of?redirectedFrom=fulltext
. (a) Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review. 1967; 159:98103.
. Available: https://journals.aps.org/pr/pdf/10.1103/PhysRev.159.98
. (b) Verlet L. Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions. Physical Review. 1968; 165:201214.
. Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.165.201
. DFTB+ Version 1.3 User Manual.
. Available: https://dftbplus.org/fileadmin/DFTB-Plus/public/dftb/current/manual.pdf
DOI: http://dx.doi.org/10.52155/ijpsat.v45.1.6172
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Anant Babu Marahatta
This work is licensed under a Creative Commons Attribution 4.0 International License.