Modeling Extreme Floods Susceptibility Using The Generalized Extreme Value Distribution: Case Study Of Gonse And Wayen, Burkina Faso.
Abstract
Over recentes decades, Burkina Faso has experienced extremes events such as droughts and floods. In this study, flood frequency has been ascertained based on Generalized Extreme Value (GEV). To this end, discharge data from Gonse and Wayen stations are collected from the National Center for Water resources. The period of analysis goes from 1980 to 2022. The Kolmogorov-Smirnov test is applied to check the distribution of the time series. Then, the Maximum Likelihood Estimation (MLE) method is implemented to estimate the location, the scale and the shape parameters of the GEV distribution. The goodness-of-fit between the empirical data and the theorical distribution is then evaluated based on Akaike criterion (AIC) and Bayenan criterion (BIC). The results revealed that across Gonse station, the probability that the annual maximun discharge will be less than 30m3/s is 0.7 and the 50-year return period discharge is 37.33 m3/s. In Wayen station, the probability that the annual maximun discharge will be less than 200m3/s is 0.5 and the 50-year return period discharge is 226.38m3/s. The AIC is 308.10 and 484.61 respectively for Gonse and Wayen station. The BIC is 313.65 and 490.16 respectively for Gonse and Wayen station. The findings may provide a scientific base for managing the risks of floods to advance climate change adaptation over the Nakambe watershed.
Keywords
Full Text:
PDFReferences
Van Aalst, M. K. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30(1), 5-18.
Ludwig, F., C. T. Van Scheltinga, J. Verhagen, B. Kruijt, E. van Ierland, R. Dellink, . . . P. Kabat. 2007. Climate Change Impacts on Developing countries-EU Accountability. Wageningen University and Research Centre
Ray, K., Pandey, P., Pandey, C., Dimri, A. P., & Kishore, K. (2019). On the recent floods in India. Current science, 117(2), 204-218.
Kousky, C. (2017). Disasters as learning experiences or disasters as policy opportunities? Examining flood insurance purchases after hurricanes. Risk analysis, 37(3), 517-530.
Werritty, A. (2006). Sustainable flood management: oxymoron or new paradigm?.Area, 38(1),16-23.
Schroeder, A. J., Gourley, J. J., Hardy, J., Henderson, J. J., Parhi, P., Rahmani, V., ... & Taraldsen, M. J. (2016). The development of a flash flood severity index. Journal of Hydrology, 541, 523-532.
Wang, L., Cuia, S., Lid, Y., Huang, H., Manandhar, B., Nitivattananon, V., ... & Huang, W. (2022). A review of the flood management: from flood control to flood resilience. Heliyon.
Willner, S. N., Otto, C., & Levermann, A. (2018). Global economic response to river floods. Nature Climate Change, 8(7), 594-598.
Jonkman, S. N. (2005). Global perspectives on loss of human life caused by floods. Natural hazards, 34(2), 151-175.
Alemu YT (2009) Socio-economic impact of flooding in Dire Dawa, Ethiopia. Unpublished MSc. Thesis, International Center for Water Hazard and Risk Management, Tsukuba, Japan
PNUD, World Bank, Inondations du 1er septembre 2009 au Burkina Faso. Evaluation des
dommages, pertes et besoins de construction, de reconstruction et de relèvement, Ouagadougou,
, 151.
Tazen, F., Diarra, A., Kabore, R. F., Ibrahim, B., Bologo/Traoré, M., Traoré, K., & Karambiri, H. (2019). Trends in flood events and their relationship to extreme rainfall in an urban area of Sahelian West Africa: The case study of Ouagadougou, Burkina Faso. Journal of Flood Risk Management, 12, e12507.
Sougué, M., Merz, B., Sogbedji, J. M., & Zougmoré, F. (2023). Extreme Rainfall in Southern Burkina Faso, West Africa: Trends and Links to Atlantic Sea Surface Temperature. Atmosphere, 14(2), 284.
Bouvier, C., Marchandise, A., Brunet, P., & Crespy, A. (2008). Un modèle pluie-débit distribué événementiel parcimonieux pour la prédétermination et la prévision des crues éclair en zone méditerranéenne. Application au bassin du Gardon d'Anduze. In 13th World Water Congress.
Seiler, R. A., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(11), 1365-1376.
Chen, J. L., Wilson, C. R., & Tapley, B. D. (2010). The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resources Research, 46(12).
Martins, E. S., and J. R. Stedinger (2000), Generalized maximum likelihood GEV quantile estimators for hydrologic data, Water Resour. Res., 36, 737– 744.
Bhunya, P. K., Singh, R. D., Berndtsson, R., & Panda, S. N. (2012). Flood analysis using generalized logistic models in partial duration series. Journal of hydrology, 420, 59-71.
Gilleland, E., Ribatet, M., and Stephenson, A. (2013). A software review for extreme value analysis. Extremes, 16(1):103–119.
El Adlouni, S., Ouarda, T. B., Zhang, X.,Roy, R., & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43(3).
Coles, S. (2001) An introduction to statistical modeling of extreme values. Springer, London
Najafi, M. R., & Moazami, S. (2016). Trends in total precipitation and magnitude–frequency of extreme precipitation in Iran, 1969–2009. International Journal of Climatology, 36(4), 1863-1872.
Ossandón, Á., Rajagopalan, B., & Kleiber, W. (2021). Spatial-temporal multivariate semi-Bayesian hierarchical framework for extreme precipitation frequency analysis. Journal of Hydrology, 600, 126499.
Farooq, M., Shafique, M., & Khattak, M. S. (2018). Flood frequency analysis of river swat using Log Pearson type 3, Generalized Extreme Value, Normal, and Gumbel Max distribution methods. Arabian Journal of Geosciences, 11, 1-10.
Yangouliba, G. I., Zoungrana, B. J. B., Hackman, K. O., Koch, H., Liersch, S., Sintondji, L. O., ... & Koffi, B. (2023). Modelling past and future land use and land cover dynamics in the Nakambe River Basin, West Africa. Modeling Earth Systems and Environment, 9(2), 1651-1667.
Aslam, M. (2019). Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS omega, 5(1), 914-917.
Kendall, M.G., 1975. Rank Correlation Methods. Grif®n, London.
Turney, S. (2022). Pearson correlation coefficient (r)| guide & examples. Scribbr. Retrieved December, 3, 2022.
Gumbel, E. J. (1958). Statistics of extremes. Columbia university press.
De Paola, F., Giugni, M., Pugliese, F., Annis, A., & Nardi, F. (2018). GEV parameter estimation and stationary vs. non-stationary analysis of extreme rainfall in African test cities. Hydrology, 5(2), 28.
Vançon, J. P. (1966). Méthode d'étude des débits par corrélation. Hydrological Sciences Journal, 11(3), 17-25.
Béné, C. (2007). Diagnostic study of the Volta Basin fisheries: Part 1 overview of the fisheries resources
Mahe, G., Diello, P., Paturel, J. E., Barbier, B., Karambiri, H., Dezetter, A., ... & Rouche, N. (2010). Decrease of rainfall and increase of runoff in the Sahel: Climatic and anthropogenic impacts on runoff of the Nakambe River in Burkina Faso. Science et changements planétaires/Sécheresse, 21(4), 330-332.
Karambiri, H., García Galiano, S. G., Giraldo, J. D., Yacouba, H., Ibrahim, B., Barbier, B., & Polcher, J. (2011). Assessing the impact of climate variability and climate change on runoff in West Africa: the case of Senegal and Nakambe River basins. Atmospheric Science Letters, 12(1), 109-115.
Amogu, O., Descroix, L., Yéro, K. S., Le Breton, E., Mamadou, I., Ali, A., ... & Belleudy, P. (2010). Increasing river flows in the Sahel?. Water, 2(2), 170-199.
Mays, L. W. (2001). Water Resources Engineering. Wiley
Amadou, A. (2019). Statistical analysis and flood frequency analysis for conceiving flood management Options in the Volta Basin (Case of Nakambe River Sub-Basin in Burkina Faso) (Master's thesis).
DOI: http://dx.doi.org/10.52155/ijpsat.v41.2.5810
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Patricia Emma Tog-Noma Bontogho
This work is licensed under a Creative Commons Attribution 4.0 International License.