DFTB1 and DFTB2 Based Real-Time Flipping Motion Studies of Central Phenylene Rotator of Crystalline Siloxaalkane Molecular Gyroscope
Abstract
Full Text:
PDFReferences
Seifert G. Tight-Binding Density Functional Theory: An Approximate Kohn−Sham DFT Scheme. Journal of Physical Chemistry A. 2007; 111:5609−5613.
Available:https://pubs.acs.org/doi/10.1021/jp069056r#:~:text=The%20DFTB%20method% 20is%20an,and%20to%20the%20Harris%20functional.
Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review B. 1998; 58:7260−7268.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.7260
Aradi B, Hourahine B, Frauenheim T. DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method. Journal of Physical Chemistry A. 2007; 111:5678−5684.
Available:https://pubs.acs.org/doi/10.1021/jp070186p#:~:text=The%20sparsity%20is%20calculated%20as,unique%20among%20current%20DFTB%20implementations.
Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S. A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Scheme for Large Biomolecules. Physica Status Solidi B. 2000; 217:357−376.
Available: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-3951(200001)217: 1% 3C41::AID-PSSB41%3E3.0.CO;2-V
Frauenheim T, Seifert G, Elstner M, Niehaus T, Kohler C, Amkreutz M, Sternberg M, Hajnal Z, Di Carlo A, Suhai S. Atomistic simulations of complex materials: groundstate and excited-state properties. Journal of Physics Condensed Matter. 2002; 14(11):3015–3047.
Available: https://iopscience.iop.org/article/10.1088/0953-8984/14/11/313/meta
Marahatta AB. Performance Evaluation of DFTB1 and DFTB2 Methods in reference to the Crystal Structures and Molecular Energetics of Siloxaalkane Molecular Compass. International Journal of Progressive Sciences and Technologies. 2023; 41(1):1231.
Marahatta AB, Kono H. Performance of NCC- And SCC- DFTB Methods for Geometries and Energies of Crystalline Molecular Gyroscope. International Journal of Innovative Research and Advanced Studies. 2019; 6(5):180185.
Available: http://www.ijiras.com/2019/Vol_6-Issue_5/paper_28.pdf
Zheng G, Irle S, Morokuma K. Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers. Chemical Physics Letter. 2005; 412: 210−216.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0009261405009334
Ohta Y, Okamoto Y, Irle S, Morokuma K. Single-walled carbon nanotube growth from a cap fragment on an iron nanoparticle: Density-functional tight-binding molecular dynamics simulations. Physical Review B. 2009; 79:195415 (17).
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.79.195415
Lee KH, Schnupf U, Sumpter BG, and Irle S. Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. American Chemical Society Omega. 2018; 3(12):16899–16915.
Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643604/#:~:text=On%20the%20basis%20of%20a,hydrogen%20bonds%20and%20isomer%20energies.
Pekka Koskinen, Ville Mäkinen. Density-functional tight-binding for beginners. Computational Materials Science. 2009; 47:237–253.
Available: https://www.sciencedirect.com/science/article/abs/pii/S0927025609003036
D. Frenkel, B. Smit. Understanding molecular simulation, From Algorithms to
Applications, Academic Press, 2002.
Available: https://www.sciencedirect.com/book/9780122673511/understanding-molecular-
simulation
Setaka W, Ohmizu S, Kabuto C, Kira, MA. Molecular Gyroscope Having Phenylene Rotator Encased in Three-spoke Silicon-based Stator. Chemistry Letters. 2007; 36(8):1076 1077.
Available: https://www.journal.csj.jp/doi/epdf/10.1246/cl.2007.1076
Setaka W, Ohmizu S, Kabuto C, Kira M. Molecular Gyroscope Having a Halogen-substituted p-Phenylene Rotator and Silaalkane Chain Stators. Chemistry Letter. 2010; 39(5):468469.
Available: https://www.journal.csj.jp/doi/pdf/10.1246/cl.2010.468
Setaka W, Yamaguchi K. Thermal modulation of birefringence observed in a crystalline molecular gyrotop. Proceedings of the National Academy of Sciences of the USA. 2012; 109:9271–9275.
Available: https://www.pnas.org/doi/10.1073/pnas.1114733109
Michl J, Charles E, Sykes H. Molecular Rotors and Motors: Recent Advances and Future Challenges. American Chemical Society Nano. 2009; 3(5):1042–1048
Available: https://pubs.acs.org/doi/10.1021/nn900411n
Marahatta AB, Kanno M, Hoki K, Setaka W, Irle S, Kono H. Theoretical Investigation of the Structures and Dynamics of Crystalline Molecular Gyroscopes. Journal of Physical Chemistry C. 2012; 116:24845–24854.
Available: https://pubs.acs.org/doi/10.1021/jp308974j
Marahatta AB. GaussianExternal Methodology Predicted Crystal Structures, Molecular Energetics, and Potential Energy Surface of the Crystalline Molecular Compass. Asian Journal of Applied Chemistry Research. 2023; 14(1):825.
Available: https://journalajacr.com/index.php/AJACR/article/view/255
Marahatta AB, Kono H. SCCDFTB Study for the Structural Analysis of Crystalline Molecular Compasses. Chemistry Research Journal. 2022; 7(4):7794.
Available: https://chemrj.org/download/vol-7-iss-4-2022/chemrj-2022-07-04-77-94.pdf
Marahatta AB, Kono H. Structural Characterization of Isolated Siloxaalkane Molecular Gyroscopes via DFTB-based Quantum Mechanical Model. International Journal of Progressive Sciences and Technologies. 2021; 26(1):526541.
Available: https://ijpsat.org/index.php/ijpsat/article/view/2950/0
Marahatta AB, Kono H. Comparative Theoretical Study on the Electronic Structures of the Isolated Molecular Gyroscopes with Polar and Nonpolar Phenylene Rotator. International Journal of Progressive Sciences and Technologies. 2020; 20(1):109122.
Available: https://ijpsat.org/index.php/ijpsat/article/view/1716
Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography. 2006; 39:453–457.
Available: https://onlinelibrary.wiley.com/doi/abs/10.1107/S002188980600731X
(a) Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review. 1967; 159:98-103.
Available: https://journals.aps.org/pr/pdf/10.1103/PhysRev.159.98
(b) Verlet L. Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions. Physical Review. 1968; 165:201:214
Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.165.201
DFTB+ Version 1.3 User Manual.
Available: https://dftbplus.org/fileadmin/DFTB-Plus/public/dftb/current/manual.pdf
DOI: http://dx.doi.org/10.52155/ijpsat.v42.2.5732
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Anant Babu Marahatta
This work is licensed under a Creative Commons Attribution 4.0 International License.