Material Optimization for Structural Strength of Hexacopter Landing Skid Using Finite Element Method

Alis Ratuningtyas, Muizuddin Azka, Lilies Esthi Riyanti, Amal Fatkhulloh

Abstract


Hexacopter is a type of UAV that has six propellers with a load of 15 kg or about 147 N in this study. Then, to support the landing of the hexacopter and to support it while being on the ground, landing skid is needed. The landing skid is designed using 3D printing from selected materials to find out which material is best used for the landing skid, including PLA, PETG, and ABS. 3D-printing supports the production of lightweight and high-strength parts. This research method uses finite element to compare several materials and uses SolidWorks to simulate static load and drop test by landing skid. The results show that PETG material is the best material with the highest safety factor in the static load and has the lowest strain value in the drop test.


Keywords


finite element method; landing skid; material; Unmanned Aerial Vehicles

Full Text:

PDF

References


S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6. MDPI, Jun. 01, 2022. doi: 10.3390/drones6060147.

J. Zhang, D. Gu, C. Deng, and B. Wen, “Robust and Adaptive Backstepping Control for Hexacopter UAVs,” IEEE Access, vol. 7, pp. 163502–163514, 2019, doi: 10.1109/ACCESS.2019.2951282.

Y. Lei and M. Cheng, “Aerodynamic performance of Hex-Rotor UAV considering the horizontal airflow,” Applied Sciences (Switzerland), vol. 9, no. 22, Nov. 2019, doi: 10.3390/app9224797.

D. Raković, A. Simonović, A. Grbović, L. Radović, M. Vorkapić, and B. Krstić, “Fatigue fracture analysis of helicopter landing gear cross tube,” Engineering Failure Analysis, vol. 129. Elsevier Ltd, Nov. 01, 2021. doi: 10.1016/j.engfailanal.2021.105672.

M. Xu, N. Sumida, and T. Takaki, “Development of A Passive Skid for Multicopter Landing on Rough Terrain,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 1316–1321. doi: 10.1109/IROS45743.2020.9340906.

L. A. N. Wibawa, “Pengaruh Kecepatan Landing dan Pemilihan Material terhadap Faktor Keamanan Landing Skid Helikopter Tanpa Awak Menggunakan Ansys Workbench,” JOURNAL OF MECHANICAL ENGINEERING MANUFACTURES MATERIALS AND ENERGY, vol. 5, no. 2, pp. 161–167, 2021

.

A. Armaan, S. Keshav, and G. Srinivas, “A step towards safety: material failure analysis of landing gear,” Mater Today Proc, vol. 27, pp. 402–409, 2020.

X. C. Ma, Y. Wang, Y. L. Jia, J. Dong, and H. Gong, “Impact Damage Analysis of Skid Landing Gear of the UAV,” Applied Mechanics and Materials, vol. 912, pp. 11–18, 2023.

K. Martinez Villadiego, M. J. Arias Tapia, J. Useche, and D. Escobar Macías, “Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review,” Journal of Polymers and the Environment, vol. 30, no. 1. Springer, pp. 75–91, Jan. 01, 2022. doi: 10.1007/s10924-021-02207-1.

M. A. Kumar, M. S. Khan, and S. B. Mishra, “Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics,” Mater Today Proc, vol. 27, pp. 975–983, 2020.

A. S. De León, A. Domínguez-Calvo, and S. I. Molina, “Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF),” Mater Des, vol. 182, p. 108044, 2019.

R. B. Kristiawan, F. Imaduddin, D. Ariawan, Ubaidillah, and Z. Arifin, “A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters,” Open Engineering, vol. 11, no. 1, pp. 639–649, 2021.

A. J. H. Challabi, B. W. Chieng, N. A. Ibrahim, H. Ariffin, and N. Zainuddin, “Effect of superheated steam treatment on the mechanical properties and dimensional stability of PALF/PLA biocomposite,” Polymers (Basel), vol. 11, no. 3, Mar. 2019, doi: 10.3390/polym11030482.

M. A. Oral, O. G. Ersoy, and E. İ. Serhatli, “Effect of acrylonitrile–butadiene–styrene/polyethylene terephthalate blends on dimensional stability, morphological, physical and mechanical properties and after aging at elevated temperature,” Journal of Plastic Film & Sheeting, vol. 34, no. 4, pp. 394–417, Apr. 2018, doi: 10.1177/8756087918768348.

K. Sathish Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar, and M. Ratteesh, “Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM,” Mater Today Proc, vol. 45, pp. 2186–2191, 2021, doi: https://doi.org/10.1016/j.matpr.2020.10.078.

T. Zhang, W. Han, C. Zhang, and Y. Weng, “Effect of chain extender and light stabilizer on the weathering resistance of PBAT/PLA blend films prepared by extrusion blowing,” Polym Degrad Stab, vol. 183, p. 109455, 2021.

F. F. Yildirim, A. S. Hicyilmaz, and K. Yildirim, “The Effects of the Weathering Methods on the Properties of the ABS, ASA and PMMA Polymers,” Polym Test, vol. 107, p. 107484, 2022.

S. Ramírez-Revilla, D. Camacho-Valencia, E. G. Gonzales-Condori, and G. Márquez, “Evaluation and comparison of the degradability and compressive and tensile properties of 3D printing polymeric materials: PLA, PETG, PC, and ASA,” MRS Commun, vol. 13, no. 1, pp. 55–62, 2023.

P. Milošević and S. Bogović, “3D technologies in individualized chest protector modelling,” Textile & Leather Review, vol. 1, no. 2, pp. 46–55, 2018.

A. K. Willett, “3D Printing and Occupational Therapy: The process of 3D printing adaptive devices,” 2019.

M. S. Pacheco, D. Barbieri, C. F. da Silva, and M. A. de Moraes, “A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others,” Int J Biol Macromol, vol. 178, pp. 504–513, 2021.

S. Tabasum et al., “A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling,” Int J Biol Macromol, vol. 122, pp. 969–996, 2019, doi: https://doi.org/10.1016/j.ijbiomac.2018.10.092.

G. Dolzyk and S. Jung, “Tensile and Fatigue Analysis of 3D-Printed Polyethylene Terephthalate Glycol,” Journal of Failure Analysis and Prevention, vol. 19, no. 2, pp. 511–518, 2019, doi: 10.1007/s11668-019-00631-z.

M. R. Khosravani, P. Soltani, and T. Reinicke, “Fracture and structural performance of adhesively bonded 3D-printed PETG single lap joints under different printing parameters,” Theoretical and Applied Fracture Mechanics, vol. 116, p. 103087, 2021, doi: https://doi.org/10.1016/j.tafmec.2021.103087.

M. S. Tunalioglu and B. V. Agca, “Wear and Service Life of 3-D Printed Polymeric Gears,” Polymers (Basel), vol. 14, no. 10, May 2022, doi: 10.3390/polym14102064.

G. Holcomb, E. B. Caldona, X. Cheng, and R. C. Advincula, “On the optimized 3D printing and post-processing of PETG materials,” MRS Commun, vol. 12, no. 3, pp. 381–387, 2022, doi: 10.1557/s43579-022-00188-3.

M. Samykano, S. K. Selvamani, K. Kadirgama, W. K. Ngui, G. Kanagaraj, and K. Sudhakar, “Mechanical property of FDM printed ABS: influence of printing parameters,” The International Journal of Advanced Manufacturing Technology, vol. 102, no. 9, pp. 2779–2796, 2019, doi: 10.1007/s00170-019-03313-0.

D. K. Yadav, R. Srivastava, and S. Dev, “Design & fabrication of ABS part by FDM for automobile application,” Mater Today Proc, vol. 26, pp. 2089–2093, 2020, doi: https://doi.org/10.1016/j.matpr.2020.02.451.

S. A. Begum, A. V. Rane, and K. Kanny, “Chapter 20 - Applications of compatibilized polymer blends in automobile industry,” in Compatibilization of Polymer Blends, A. A.R. and S. Thomas, Eds., Elsevier, 2020, pp. 563–593. doi: https://doi.org/10.1016/B978-0-12-816006-0.00020-7.

L. Wibawa, “EFFECT OF MATERIAL SELECTION ON THE STRENGTH OF THE MAIN LANDING GEAR FRAME FOR UAV AIRCRAFT,” Jurnal Teknologi dan Terapan Bisnis (JTTB), vol. 2, no. 1, pp. 48–52, 2019.

Y. Vashi, R. Anand, K. Jayakrishna, G. Rajyalakshmi, and S. A. Raj, “Design and analysis of 3D printed UAV wheel,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 8307–8312. doi: 10.1016/j.matpr.2021.03.298.

S. D. Müzel, E. P. Bonhin, N. M. Guimarães, and E. S. Guidi, “Application of the finite element method in the analysis of composite materials: A review,” Polymers, vol. 12, no. 4. MDPI AG, Apr. 01, 2020. doi: 10.3390/POLYM12040818.

Y. Tong, W. Q. Shen, and J. F. Shao, “An adaptive coupling method of state-based peridynamics theory and finite element method for modeling progressive failure process in cohesive materials,” Comput Methods Appl Mech Eng, vol. 370, Oct. 2020, doi: 10.1016/j.cma.2020.113248.

R. Tojiyev, B. Ortiqaliyev, and K. Sotvoldiyev, “Improving the design of the screed for firebricks using SolidWorks,” Journal of Advanced Research and Stability (JARS), vol. 01, no. 05, pp. 91–99, 2021.

K. Vardaan and P. Kumar, “Design, analysis, and optimization of thresher machine flywheel using Solidworks simulation,” Mater Today Proc, vol. 56, pp. 3651–3655, 2022, doi:https://doi.org/10.1016/j.matpr.2021.12.348.

X. Liang, M. Z. Ali, and H. Zhang, “Induction Motors Fault Diagnosis Using Finite Element Method: A Review,” IEEE Trans Ind Appl, vol. 56, no. 2, pp. 1205–1217, 2020, doi: 10.1109/TIA.2019.2958908.

L. Sabat and C. K. Kundu, “History of finite element method: a review,” Recent Developments in Sustainable Infrastructure: Select Proceedings of ICRDSI 2019, pp. 395–404, 2020.

S. Ereiz, I. Duvnjak, and J. Fernando Jiménez-Alonso, “Review of finite element model updating methods for structural applications,” Structures, vol. 41, pp. 684–723, 2022, doi: https://doi.org/10.1016/j.istruc.2022.05.041.

X. Li, W. Wei, and F. Bai, “A full three-dimensional vortex-induced vibration prediction model for top-tensioned risers based on vector form intrinsic finite element method,” Ocean Engineering, vol. 218, p. 108140, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.108140.

K. Feng, J. C. Ji, Q. Ni, and M. Beer, “A review of vibration-based gear wear monitoring and prediction techniques,” Mech Syst Signal Process, vol. 182, p. 109605, 2023, doi: https://doi.org/10.1016/j.ymssp.2022.109605.

A. Z. E.-A. Arab et al., “Finite-Element analysis of a lateral femoro-tibial impact on the total knee arthroplasty,” Comput Methods Programs Biomed, vol. 192, p. 105446, 2020, doi: https://doi.org/10.1016/j.cmpb.2020.105446.

MatWeb, “Overview of materials for Polylactic Acid (PLA) Biopolymer,” https://www.matweb.com/search/DataSheet.aspx?MatGUID=ab96a4c0655c4018a8785ac4031b9278&ckck=1. Accessed on August 10, 2023.

MatWeb, “Overview of materials for PETG Copolyester,” https://www.matweb.com/search/DataSheet.aspx?MatGUID=4de1c85bb946406a86c52b688e3810d0. Accessed on August 10, 2023.

MatWeb, “Overview of materials for Acrylonitrile Butadiene Styrene (ABS), Molded,” https://www.matweb.com/search/DataSheet.aspx?MatGUID=eb7a78f5948d481c9493a67f0d089646. Accessed on August 10, 2023.




DOI: http://dx.doi.org/10.52155/ijpsat.v40.1.5581

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Alis Ratuningtyas, Muizzudin Azka, Lilies Esthi Riyanti, Amal Fatkhulloh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.