The Set Multipartite Ramsey Numbers M_j(P_n, mK_2)
Abstract
For given two any graph H and G, the set multipartite Ramsey number M_j(G, H) is the smallest integer t such that for every factorization of graph K_(t×j):= F1 F2 so that F1 contains G as a subgraph or F2 contains H as a subgraph. In this paper, we determine M_j(P_n, mK_2) with j=3,4,5 and m>=2 where P_n denotes a path for n=2,3 vertices and mK_2 denotes a matching (stripes) of size m and pairwise disjoint edges.
Keywords
Full Text:
PDFReferences
Burger A. P., and Van Vuuren, J. H, “Ramsey Numbers In Complete Balance Multipartite Graphs, Part I : Set Numbers”, vol. 283. Discreate Math. 2004, pp. 37–43.
Chavatal, V., and F. Harry, “Generalised Ramsey Theory For Graphs, II: Small Diagonal Numbers”, vol. 32. Proceedings of The American Mathematical Society. 1972, pp. 389-394.
Chartand, G., and S. Schuster, “ On The Existence of Specified Cycles In Complementary Graphs”, vol. 77. Bulletin of The American Mathematical Society. 1971, pp. 995-998.
C. Jayawardene and L. Samarasekara, “Size Multiprtite Ramsey Numbers for Small Paths Versus Stripes”, vol. 12. Annals of Pure and Applied Mathematics. 2016, pp. 211-220.
Exoo, G, “Constructing Ramsey Graphs With a Computer”, vol. 59. Congressus Numerantium. 1987, pp. 31-36.
Greenwood, R. E., and Gleason, A. M, “Combinatorial Relations and Chromatic Graphs”, vol. 7. Canada. J. Math. 1955, pp. 1-7.
Harborth, H., and Mengersen, I, “Some Ramsey Numbers For Complete Bipartite Graphs”, vol. 13. Australasian. J. Combin. 1996, pp. 119-128.
Harborth, H., and Mengersen, I, “Ramsey Numbers in Octahedron Graps”, vol. 231. Discrete Math. 2001, pp. 241-246.
DOI: http://dx.doi.org/10.52155/ijpsat.v39.1.5405
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nada Nadifah Ma'ruf
This work is licensed under a Creative Commons Attribution 4.0 International License.