Réduction Des Emissions De Gaz A Effet De Serre Du Transport Maritime : Bilan Des Politiques De l’Organisation Maritime Internationale

Chadli Yaya, Lasserre Frédéric

Abstract


Dans le contexte de la lutte contre les changements climatiques, la réduction des émissions de gaz à effet de serre est devenue une réelle préoccupation pour la communauté maritime. Pour s’aligner sur les objectifs de l’Accord de Paris, l’OMI a adopté en 2018 sa stratégie initiale appelant à réduire l'intensité carbone du transport maritime d’au moins 50% d'ici à 2050. Cette stratégie représente le premier cadre mondial sur le climat du transport maritime et identifie une liste de mesures à court, moyen et long terme pour atteindre l’objectif. La présente étude a examiné la stratégie initiale de l’OMI en mettant en exergue les politiques et limites à la réduction des émissions de gaz à effet de serre du transport maritime.
Mots-clés : Réduction des émissions de GES, réglementation de l'OMI, Changements climatiques


Keywords


GHG emission reduction, IMO regulations, Climate change

Full Text:

PDF

References


Acciaro, M., et G. Wilmsmeier. 2015. Energy efficiency in maritime logistics chains. Research in Transportation Business & Management Complete(17): 1‑7. doi: 10.1016/j.rtbm.2015.11.002.

Alamoush, A. S., A. I. Ölçer, et F. Ballini. 2022. Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction. Cleaner Logistics and Supply Chain 3: 100021. doi: 10.1016/j.clscn.2021.100021.

Balcombe, P., J. Brierley, C. Lewis, L. Skatvedt, J. Speirs, A. Hawkes, et I. Staffell. 2019. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management 182: 72‑88. doi: 10.1016/j.enconman.2018.12.080.

Baumler, R., M. C. Arce, et A. Pazaver. 2021. Quantification of influence and interest at IMO in Maritime Safety and Human Element matters. Marine Policy 133: 104746. doi: 10.1016/j.marpol.2021.104746.

Bodansky, D. 2018. Regulating Greenhouse Gas Emissions from Ships: The Role of the International Maritime Organization. Ocean Law Debates. Brill Nijhoff: 478‑501. doi: 10.1163/9789004343146_019.

Cadez, S., A. Czerny, et P. Letmathe. 2019. Stakeholder pressures and corporate climate change mitigation strategies. Business Strategy and the Environment 28(1): 1‑14. doi: 10.1002/bse.2070.

Chircop, A. 2020. The Regulation of Ship Emissions in Canadian Northwest Atlantic and Arctic Waters: Is There a Need for Consistency and Equity? In Governance of Arctic Shipping: Rethinking Risk, Human Impacts and Regulation, éd. A. Chircop, F. Goerlandt, C. Aporta, et R. Pelot, 249‑264. Springer Polar Sciences. Cham: Springer International Publishing. doi: 10.1007/978-3-030-44975-9_13.

Chircop, A., M. Doelle, et R. Gauvin. 2018. Shipping and Climate Change: International Law and Policy Considerations.

Corbett, J. J., J. J. Winebrake, E. H. Green, P. Kasibhatla, V. Eyring, et A. Lauer. 2007. Mortality from Ship Emissions: A Global Assessment. Environmental Science & Technology 41(24). American Chemical Society: 8512‑8518. doi: 10.1021/es071686z.

Corbett, J. J., J. J. Winebrake, et E. H. Green. 2010. An assessment of technologies for reducing regional short-lived climate forcers emitted by ships with implications for Arctic shipping. Carbon Management 1(2). Taylor & Francis: 207‑225. doi: 10.4155/cmt.10.27.

Cullinane, K., et S. Cullinane. 2013. Atmospheric Emissions from Shipping: The Need for Regulation and Approaches to Compliance. Transport Reviews 33(4). Routledge: 377‑401. doi: 10.1080/01441647.2013.806604.

Dahl, T., et K. Fløttum. 2019. Climate change as a corporate strategy issue: A discourse analysis of three climate reports from the energy sector. Corporate Communications: An International Journal 24(3). Emerald Publishing Limited: 499‑514. doi: 10.1108/CCIJ-08-2018-0088.

Doelle, M., et A. Chircop. 2018. Decarbonizing International Shipping: Potential Roles of the IMO’s Initial Strategy and the UN Climate Regime. Articles, Book Chapters, & Popular Press.

Doudnikoff, M. Réduire les émissions du transport maritime: les politiques publiques et leurs impacts sur les stratégies des compagnies maritimes de lignes régulières: 386.

Endres, S., F. Maes, F. Hopkins, K. Houghton, E. M. Mårtensson, J. Oeffner, B. Quack, P. Singh, et D. Turner. 2018. A New Perspective at the Ship-Air-Sea-Interface: The Environmental Impacts of Exhaust Gas Scrubber Discharge. Frontiers in Marine Science 5. Frontiers. doi: 10.3389/fmars.2018.00139.

Eyring, V., I. S. A. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, R. G. Grainger, J. Moldanova, H. Schlager, et D. S. Stevenson. 2010. Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment 44(37). Transport Impacts on Atmosphere and Climate: The ATTICA Assessment Report: 4735‑4771. doi: 10.1016/j.atmosenv.2009.04.059.

Germond, B., et F. W. Ha. 2019. Climate change and maritime security narrative: the case of the international maritime organisation. Journal of Environmental Studies and Sciences 9(1): 1‑12. doi: 10.1007/s13412-018-0509-2.

Hansen, E., H. Rasmussen, et M. Lützen. 2020. Making shipping more carbon-friendly? Exploring ship energy efficiency management plans in legislation and practice. Energy Research & Social Science 65: 101459. doi: 10.1016/j.erss.2020.101459.

Hoegh-Guldberg, O., et J. F. Bruno. 2010. The impact of climate change on the world’s marine ecosystems. Science (New York, N.Y.) 328(5985): 1523‑1528. doi: 10.1126/science.1189930.

ICCT, 2020. New IMO study highlights sharp rise in short-lived climate pollution. Retrieved from https://theicct.org/news/fourth-imo-ghg-study-finalreport-pr-20200804. Consulté le 04-10-2022.

Karim, S. 2015. Implementation of IMO Legal Instruments: International Technical and Financial Cooperation. In Prevention of Pollution of the Marine Environment from Vessels: The Potential and Limits of the International Maritime Organisation, éd. M. S. Karim, 127‑149. Cham: Springer International Publishing. doi: 10.1007/978-3-319-10608-3_7.

Lindstad, H., B. E. Asbjørnslett, et A. H. Strømman. 2012. The importance of economies of scale for reductions in greenhouse gas emissions from shipping. Energy Policy 46: 386‑398. doi: 10.1016/j.enpol.2012.03.077.

Lindstad, H. E., et G. Eskeland. 2016. Environmental regulations in shipping: Policies leaning towards globalization of scrubbers deserve scrutiny. 67-76. doi: 10.1016/j.trd.2016.05.004.

Mander, S. 2017. Slow steaming and a new dawn for wind propulsion: A multi-level analysis of two low carbon shipping transitions. Marine Policy 75: 210‑216. doi: 10.1016/j.marpol.2016.03.018.

Miola, A., M. Marra, et B. Ciuffo. 2011. Designing a climate change policy for the international maritime transport sector: Market-based measures and technological options for global and regional policy actions. Energy Policy 39(9): 5490‑5498. doi: 10.1016/j.enpol.2011.05.013.

Nikolakaki, G. 2012. Economic incentives for maritime shipping relating to climate protection. WMU Journal of Maritime Affairs 12. doi: 10.1007/s13437-012-0036-z.

Olsthoorn, M., J. Schleich, L. Javaudin, et Y. Jiang. 2016. BARRIERS TO ENERGY EFFICIENCY IN DEVELOPING COUNTRIES’ INDUSTRY SECTORS: EMPIRICAL EVIDENCE FROM CLEAN DEVELOPMENT MECHANISM (CDM) PROJECTS. The Journal of Energy and Development 42(1/2): 189‑221.

Poulsen, R. T., et H. Sornn-Friese. 2015. Achieving energy efficient ship operations under third party management: How do ship management models influence energy efficiency? Research in Transportation Business & Management 17. Energy Efficiency in Maritime Logistics Chains: 41‑52. doi: 10.1016/j.rtbm.2015.10.001.

Psaraftis, H. N. 2012. Market-based measures for greenhouse gas emissions from ships: a review. WMU Journal of Maritime Affairs 11(2): 211‑232. doi: 10.1007/s13437-012-0030-5.

Rajé, F., M. Tight, et F. D. Pope. 2018. Trafic pollution: A search for solutions for a city like Nairobi. Cities 82: 100‑107. doi: 10.1016/j.cities.2018.05.008.

Rehmatulla, N., J. Calleya, et T. Smith. 2017. The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering 139: 184‑197. doi: 10.1016/j.oceaneng.2017.04.029.

Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T. L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C. Liu, S. Rawlins, et A. Imeson. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193). Nature Publishing Group: 353‑357. doi: 10.1038/nature06937.

Ross, H. H., et O. Schinas. 2019. Empirical evidence of the interplay of energy performance and the value of ships. Ocean Engineering 190: 106403. doi: 10.1016/j.oceaneng.2019.106403.

Salo, K., M. Zetterdahl, H. Johnson, E. Svensson, M. Magnusson, C. Gabrielii, et S. Brynolf. 2016. Emissions to the Air. In Shipping and the Environment : Improving Environmental Performance in Marine Transportation, éd. K. Andersson, S. Brynolf, J. F. Lindgren, et M. Wilewska-Bien, 169‑227. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-662-49045-7_5.

Seetharaman, K. Moorthy, N. Patwa, Saravanan, et Y. Gupta. 2019. Breaking barriers in deployment of renewable energy. Heliyon 5(1): e01166. doi: 10.1016/j.heliyon.2019.e01166.

Serra, P., et G. Fancello. 2020. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability 12(8). Multidisciplinary Digital Publishing Institute: 3220. doi: 10.3390/su12083220.

Shi, Y. 2016. Reducing greenhouse gas emissions from international shipping: Is it time to consider market-based measures? Marine Policy 64: 123‑134. doi: 10.1016/j.marpol.2015.11.013.

Stevens, L., C. Sys, T. Vanelslander, et E. van Hassel. 2015. Is new emission legislation stimulating the implementation of sustainable and energy-efficient maritime technologies? Research in Transportation Business & Management 17. Energy Efficiency in Maritime Logistics Chains: 14‑25. doi: 10.1016/j.rtbm.2015.10.003.

Stroeve, J., M. M. Holland, W. Meier, T. Scambos, et M. Serreze. 2007. Arctic sea ice decline: Faster than forecast. Geophysical Research Letters 34(9). doi: https://doi.org/10.1029/2007GL029703.

Tavasszy, L., et M. Piecyk. 2018. Sustainable Freight Transport. MDPI.

Trivyza, N. L., A. Rentizelas, et G. Theotokatos. 2020. A Comparative Analysis of EEDI Versus Lifetime CO2 Emissions. Journal of Marine Science and Engineering 8(1). Multidisciplinary Digital Publishing Institute: 61. doi: 10.3390/jmse8010061.

Walker, T. R., O. Adebambo, M. C. Del Aguila Feijoo, E. Elhaimer, T. Hossain, S. J. Edwards, C. E. Morrison, J. Romo, N. Sharma, S. Taylor, et S. Zomorodi. 2019. Chapter 27 - Environmental Effects of Marine Transportation. In World Seas: an Environmental Evaluation (Second Edition), éd. C. Sheppard, 505‑530. Academic Press. doi: 10.1016/B978-0-12-805052-1.00030-9.

Wilewska-Bien, M., J. F. Lindgren, M. Magnusson, M. Zetterdahl, K. Salo, C. Gabrielii, L. Granhag, et S. Brynolf. 2016. Measures to Reduce Discharges and Emissions. In Shipping and the Environment: Improving Environmental Performance in Marine Transportation, éd. K. Andersson, S. Brynolf, J. F. Lindgren, et M. Wilewska-Bien, 341‑396. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-662-49045-7_11.

Yliskylä-Peuralahti, J. 2016. Sustainable Energy Transitions in Maritime Transport The Case of Biofuels*. Journal of Sustainable Mobility 3: 67‑93. doi: 10.9774/GLEAF.2350.2016.de.00005].

Zis, T. P. V., et H. N. Psaraftis. 2021. Impacts of short-term measures to decarbonize maritime transport on perishable cargoes. Maritime Economics & Logistics. doi: 10.1057/s41278-021-00194-7.




DOI: http://dx.doi.org/10.52155/ijpsat.v35.1.4670

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 chadli yaya, lasserre frédéric

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.