Assessment Of Ricinus Communis Ml Crude Extracts Towards Urinary Tract Infection Strains With Their Associated Ailments

Ochieng O Anthony, Nasif A. Mohamed, David K. Kowanga

Abstract


Cases of synergic Urinary Tract Infections with its associated ailments has become a menace. Due to its high costs of treatment, unavailability of relevant antibiotics, misdiagnosis and recurrence, most patients within Africa Sub-Sahara regions prefer ethnopharmacological ways of taking boiled and sieved liquid concoction made from mature leaves (ML) of ricinus communis to clear the urinary tract system from these microbes with their associated ailments. Crude extracts of methanol, chloroform, hexane, and Diethylether prepared from ricinus communis dried powered mature leaves were subjected to phytochemical screening, antibacterial, GC/MS and antioxidant assays. Crude methanolic and chloroform extracts prepared from a mixture of coarsely powdered dried twigs and mature leaves were evaluated for cytotoxic activity on cancer cell line (HCT-116 and K-562).  Antibacterial assay of the crude extracts reveals recommendable range of values categorized as moderate and high sensitive with respect to the standard measure. Methanol extract exhibited antibacterial activities against all gram-positive and gram-negative bacterial species while diethylether extract showed its potency against the gram-positive staph only among escherichia, klebsiella and pseudomonas species. Chloroform, diethylether and hexane crude extracts proven to be inert against pseudomonas strain. Highest scavenging capacity range obtained is 60.38 ± 0.034 percent while the lowest cytotoxicity range is 20.18 ± 1.37 μg/ml-1revealing the medicinal value and safeness of the plant extract. Phytochemical analysis and GC/MS results revealed the presence of phytoconstituents and museum of bioactive agents with antibacterial, antifungal, antiviral, anti-inflammatory, anticancer, antidiarrheal, antimutagenic and anti-oxidant properties thus ascertaining its efficacy towards the infection with associated ailments.


Keywords


UTI strains, Phytoconstituents, Bioactive Ingredients, Antioxidant, Cytotoxicity, Ethnopharmacological

Full Text:

PDF

References


Al-Achi, Antoine (2008). An introduction to botanical medicines: history, science, uses, and dangers. Westport, Conn. Praeger Publishers. p. 126. ISBN 978-0-313-35009-2.

Vasudevan, R. (2014). Urinary tract infection: an overview of the infection and the associated risk factors, J Micro Exp, 1(2):42-54. DOI: 10.15406/jmen.2014.01.00008.

Foxman, B. (2002). Epidemiology of urinary tract infections: incidence, morbidity and economic costs, Am J Med, 113:5-13.

Warren, J.W., Steinberg, L., Hebel, J.R. & Tenney, J.H. (1989). The prevalence of urinary catheterization in Maryland nursing homes, Arch Intern Med, 149(7):1535-7.

Gupta, K. & Stamm, W.E. (1990). Pathogenesis and management of recurrent urinary tract infections in women. World J Urol, 17(6):415‒420.

Hooten, T. (2003). The current management strategies for community-acquired urinary tract infection, Infect Dis Clin N Am, 17:303-332.

Zorc, J.J., Levine, D.A., Platt, S.L., Dayan, P.S., Macias, C.G., Krief, W., Schor, J., Bank, D., Shaw, K.N. & Kuppermann, N. (2005). Clinical and demographic factors associated with urinary tract infection in young febrile infants, Pediat; 116: 644‐ 648.

Tessema, B., Kassu, A. & Mulu, A. (2007). Predominant isolates of urinary tract pathogens and their antimicrobial susceptibility patterns in Gondar University Teaching Hospital, Northwest Ethiopia, Ethiop Med J, 45: 61‐ 67.

Zhu, C., Wang, DQ., Zi, H., Huang, Q., Gu, J., Li, L., Guo, X., Li, F., Fang, C., Li, X. & Zeng, X. (2021). Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019. Military Med Res 8, 64 (2021). https://doi.org/10.1186/s40779-021-00359-8.

Vital and health statistics. (2021).

Murray, O.B.,, Carlos Flores,C.,, Corin Williams, C., Deborah A. Flusberg, D.A.,, Elizabeth E. Marr, E.E., Karolina M. Kwiatkowska, K.M., , Joseph L. Charest, J.L., Isenberg, B.C., Jennifer L. & Rohn, J.L.(2021). Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems, Front Cell Infect Micro, doi.org/10.3389/fcimb.2021.691210.

Rowe, T.A. & Juthani-Mehta, M. (2014). Diagnosis and management of urinary tract infection in older adults. Infect Dis Clin North Am, 28(1): 75- 80.

Raphael, Z., Sangeda, F. P. & Deus. M. M. (2021). Prevalence of urinary tract infections and antibiogram of uropathogens isolated from children under five attending Bagamoyo District Hospital in Tanzania, F1000Research, 10:449. https://doi.org/10.12688/f1000research.52652.1.

Shaikh, N., Morone, N.E. & Bost, J.E. (2008). Prevalence of urinary tract infection in childhood: a meta‐analysis. Pediatr Infect Dis J, 27: 302‐ 308.

Agha, M., Dick, P.T. & Feldman, W. (1998). Cohort study on the circumcision of newborn boys and subsequent risk of urinary tract infection, Lancet, 352:1813-1816.

Al‐Badr, A. & Al‐Shaikh, G. (2013). Recurrent urinary tract infections management in women: a review, Sultan Qaboos Univ Med J, 13: 359‐ 362.

Jamal, M. ,Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, A.M., Hussain, T., Ali, M., Rafiq, M. & Kamil, A.(2018) .Bacterial biofilm and associated infections, J of Chin Med Ass, Volume 81, Issue 1, Pages 7-11.

Sun, H.Y., Chen, S.Y., Chang, S.C., Pan, S.C., Su, C.P. & Chen, Y.C. (2006). Community-onset Escherichia coli and Klebsiella pneumoniae bacteremia: influence of health care exposure on antimicrobial susceptibility, Diagn Microbiol Infect Dis,55(2):135-41.

Flores-Mireles, A.L., Walker, J.N., Caparon. M. & Hultgren, S.J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options, Nat Rev Micro,13(5):269–84.

Mody, L.& Juthani‐Mehta, M. (2014). Urinary tract infections in older women: a clinical review. JAMA, 311: 844‐ 854.

CDC NNIS System. (1999). National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1990-May 1999. Am J Infect Control ,27: 520-32.

Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. J of Anaesth Clin Pharm, 33, 300– 305.

Ojezele, M.O. (2020). Urinary tract infection: prevalence, isolated organisms and antimicrobial susceptibility pattern, South-south Nigeria, Central Afr J of Med, Vol. 65 No. 7-12.

Dash, M., Padhi, S., Mohanty, I., Panda, P., & Parida, B. (2013). Antimicrobial resistance in pathogens causing urinary tract infections in a rural community of Odisha, India. J of family & comm med, 20(1), 20–26. https://doi.org/10.4103/2230-8229.108180.

Haindongo, E.H., Funtua, B. & Singu, B. (2020). Antimicrobial resistance among bacteria isolated from urinary tract infections in females in Namibia, 2016–2017. Antimicrob Resist Infect Control 11, 33 (2022). https://doi.org/10.1186/s13756-022-01066-2.

Raz, R., Chazan, B., Kennes, Y., et al. (2002). Israeli urinary tract infection group. Empiric use of trimethoprim‐sulfamethoxazole (TMP‐SMX) in the treatment of women with uncomplicated urinary tract infections, in a geographical area with a high prevalence of TMP‐SMX–resistant uropathogens, Clin Infect Dis, 34: 1165‐ 1169.

Suzan, G. & Hatice, U.A. (2018). Antibiotic resistance patterns of urinary tract pathogens in Turkish children, Glo H Res and Pol, (2018) 3:10. https://doi.org/10.1186/s41256-018-0063-1.

Hannan, T.J., Totsika, M., Mansfield, K.J., Moore, K.H., Schembri, M.A. & Hultgren, S. (2012). Host–pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection., FEMS, Micro Rev, 36: 616‐ 648.

Khamees, S, S. & Ghafir, K.S.A. (2020). Resistance patterns of multi-drug resistant escherichia coli causing urinary tract infection, Int J of Res-Granth, Vol. 8 No. 4.

Noor, N., Ajaz, M., Rasool, S.A. & Pirzada, Z.A. (2004). Urinary tract infections associated with multidrug resistant enteric bacilli: characterization and genetical studies, Pak J Pharm Sci, 2004; 17: 115‐ 123.

W.H.O. (2014). Antibiotic Resistance to Bacterial Strains.

Das, D.C., Sinha, N.K., Patsa, M.K. & Das, M. (2015). Investigation of herbals for the treatment of leucorrhoea from south west Bengal, India, Inter J Bioassays, 4: 4555‐ 4559.

Sofowora, A. (1993). Phytochemical Screening of Medicinal Plants and Traditional Medicine in Africa Edition. Spectrum Books Ltd., Nigeria, 150-156.

Trease, G. & Evans, W. (2002). Phytochemicals. In: Pharmacognosy, 15th Edition, Saunders Publishers, London, 42-393.

CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing, CLSI Supplement M100, 29th Edition, Clinical and Laboratory Standards Institute: Wayne, PA, USA.

Balouiri, M., Sadiki, M.& Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005.

Kang, C. G., Hah, D. S., Kim, C. H., Kim, Y. H., Kim, E. & Kim, J. S. (2011). Evaluation of antimicrobial activity of the methanol extracts from eight traditional medicinal plants, Toxicological research, 27(1), 31–36. https://doi.org/10.5487/TR.2011.27.1.031.

Taylor, P.C., Schoenknecht ,F.D., Sherris, J.C. & Linner, E.C.(1983). Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrobial Agents and Chemotherapy, Vol. 23, No. 1, https://doi.org/10.1128/AAC.23.1.142.

Bouabid, K., Lamchouri, F., Toufik, H., & Faouzi, M. (2020). Phytochemical investigation, in vitro and in vivo antioxidant properties of aqueous and organic extracts of toxic plant: Atractylis gummifera L. J of ethnopharmacology, 253, 112640. https://doi.org/10.1016/j.jep.2020.112640.

Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int J of Mol Sc, 22(23), 12827. https://doi.org/10.3390/ijms222312827.

Vajrabhaya, L. & Korsuwannawong, S. (2018). Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. J Anal Sci Technol 9, 15 (2018). https://doi.org/10.1186/s40543-018-0146-0.

Kaisarun, A., Emma, C. B, Joseph, J. B., David, H., Yaegl Community Elders, Subramanyam, R. V.& Joanne, F. J. (2016). "Phytochemical Profile and Antibacterial and Antioxidant Activities of Medicinal Plants Used by Aboriginal People of New South Wales, Australia", Evidence-Based Compl and Alt Med, vol. 2016, ID 4683059, 14 pgs. https://doi.org/10.1155/2016/4683059.

Compean, K.L. & Ynalvez, R.A. (2014). Antimicrobial Activity of Plant Secondary Metabolites: A Review. Res J of Medicinal Plants, 8: 204-213. DOI: 10.3923/rjmp.2014.204.213

Guimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules (Basel, Switzerland), 24(13), 2471. https://doi.org/10.3390/molecules24132471.

Zhang, K., Jiang, Y., Zhao, H., Köllner, T. G., Chen, S., Chen, F., & Chen, F. (2020). Diverse Terpenoids and Their Associated Antifungal Properties from Roots of Different Cultivars of Chrysanthemum Morifolium Ramat. Molecules (Basel, Switzerland), 25(9), 2083. https://doi.org/10.3390/molecules25092083.

Proshkina, E, Plyusnin, S, Babak T, Lashmanova, E, Maganova, F, Koval, L, Platonova, E, Shaposhnikov, M. & Moskalev, A. (2020). Terpenoids as Potential Geroprotectors. Antioxidants. 9(6):529. https://doi.org/10.3390/antiox9060529.

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B. & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel, Switzerland), 10(3), 318. https://doi.org/10.3390/antibiotics10030318.

Soetan, k. O., Oyekunle, M. A., Aiyelaagbe, O. O. & Fafunso, M. A. (2006). Evaluation of the antimicrobial activity of saponins extract of Sorghum Bicolor L. Moench, Afr J of Biotech, Vol. 5 (23), 2405-2407.

Omosa, L. K., Midiwo, J. O., Mbaveng, A. T., Tankeo, S. B., Seukep, J. A., Voukeng, I. K., Dzotam, J. K., Isemeki, J., Derese, S., Omolle, R. A., Efferth, T., & Kuete, V. (2016). Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springer Plus, 5(1), 901. https://doi.org/10.1186/s40064-016-2599-1.

Kumar, S. & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013:162750. doi: 10.1155/2013/162750.

Mbaveng, A. T., Ngameni, B., Kuete, V., Simo, I. K., Ambassa, P., Roy, R. & Meyer, J. M. (2008). Antimicrobial activity of the crude extracts and five flavonoids from the twigs of Dorstenia barteri (Moraceae), J of Ethnopharm, 116(3), 483-489.

Cushnie, T. T. & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. Int J of Antimicro Agents, 26(5), 343-356.

Rojas, J. J., Ochoa, V. J., Ocampo, S. A., & Muñoz, J. F. (2006). Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections. BMC complementary and alternative medicine, 6, 2. https://doi.org/10.1186/1472-6882-6-2.

Simoben, C., Ibezim, A., Ntie-Kang, F., N Nwodo, J., & L Lifongo, L. (2015). Exploring cancer therapeutics with natural products from African medicinal plants, part I: xanthones, quinones, steroids, coumarins, phenolics and other classes of compounds. Anticancer Agents in Med Chem, 15(9), 1092-1111.

Soulef, K., Abdelouahab, Y., & Dalal, B. (2014). Effect of glycosides extract of the medicinal plant Glycyrrhiza glabra L. from the region of Mlilli (southeast of Algeria) on the growth of some human pathogenic bacteria, J of Scientific & Innovative Res, 3(1), 28-34.

Serrano, J., Puupponen‐Pimiä, R., Dauer, A., Aura, A. M., & Saura‐Calixto, F. (2009). Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutr & Food Res, 53(S2), S310- S329.

Banso, A., & Adeyemo, S. O. (2007). Evaluation of antibacterial properties of tannins isolated from Dichrostachys cinerea. Afri J of Biotech, 6(15), pp. 1785-1787.

Ashok, P. K., & Upadhyaya, K. (2012). Tannins are astringent. J of Pharmacognosy and Phytochemistry, 1(3), 45-50.

Kubmarawa, D., Ajoku, G.A, Enworem, N.M. & Okories, D.A. (2007). Preliminary phytochemical and antimicrobial screening of 50 medicinal plants from Nigeria. Afri. J. Biotechnology,6: 1690 – 1696.

Eloff, J.N. (2019). Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement Altern Med 19, 106 (2019). https://doi.org/10.1186/s12906-019-2519-3.

Tegos, G., Stermitz, F. R., Lomovskaya, O., & Lewis, K. (2002). Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother. 46, 3133–3141. doi: 10.1128/AAC.46.10.3133-3141.2002.

Cushnie, T.P., Cushnie, B., Echeverría, J., Fowsantear, W., Thammawat, S., Dodgson, J.L., Law, S., & Clow, S.M. (2020). "Bioprospecting for antibacterial drugs: a multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls". Pharmaceutical Research. 37 (7): Article 125. doi:10.1007/s11095-020-02849-1.

Temmerman, R., Goethals, K., Garmyn, A., Vanantwerpen, G., Vanrobaeys, M., Haesebrouck, F., Antonissen, G. & Devreese, M. (2020). Agreement of Quantitative and Qualitative Antimicrobial Susceptibility Testing Methodologies: The Case of Enrofloxacin and Avian Pathogenic Escherichia coli, Front. Microbiol , Volume 11, https://doi.org/10.3389/fmicb.2020.570975.

Yogeswari, S., Ramalakshmi, S., Neelavathy, R. & Muthumary, J. (2012). Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Glob J Pharmacol, 6(2), 65–71.

Mujeeb, F., Bajpai, P. & Pathak, N. (2014). Antibacterial and anti-inflammatory activities Phenol, 2, 4-bis (1, 1-dimethylethyl) - derivative is present in various plants. Biomed Res International, 2014, Article ID 497606, 11 pages. Doi.org/10.1155/2014/497606.

Pejin, B., Savic, A., Sokovic, M., Glamoclija, J., Ciric, A., Nikolic. N., Radotic, K. & Mojovic, M. (2014). Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat Prod Res, Volume 28, Issue 6. Pages 372-376. https://doi.org/10.1080/14786419.2013.869692.

Mohamed, T., Shaaban, F., Ghaly, M. & Fahmi, M. (2021). Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria, J of Basic Microb. Vol 61, issue 6, 557 – 568. https://doi.org/10.1002/jobm.202100061.

Faridha Begum, I., Mohankumar, R., Jeevan, M., & Ramani, K. (2016). GC-MS Analysis of Bio-active Molecules Derived from Paracoccus pantotrophus FMR19 and the Antimicrobial Activity Against Bacterial Pathogens and MDROs. Indian J of Microb, 56(4), 426–432. https://doi.org/10.1007/s12088-016-0609-1.

Reagan, E., Samuel, L. & Ismail, A. (2013). The effect of combination of octadecanoic acid, methyl ester and ribavirin against measles virus, Int J of Sci & Tech Res, 2(10):181-184

Babu, A., Anand, D. & Saravanan, P. (2017). Phytochemical Analysis of Ficus arnottiana (Miq.) Leaf Extract Using GC-MS Analysis, Int J of Pharmaco and Phyto Res, 9(6):775- 779.

Parsa, Y., Manigeh, K., Sara, R., Mohammad, R. & Mojtaba, S. (2015). Vitamin E as adjuvant treatment for urinary tract infection in girls with acute pyelonephritis, Iran J Kidney Dis, 9(2):97-104.

Kumari, N., Menghani, E. & Mithal, R. (2019), Bioactive Compounds characterization and Antibacterial Potentials of Actinomycetes isolated from Rhizospheric soil, J of Scientific and Industrial Res, NISCAIR-CSIR, India, Vol 78(11) 793 – 798.

Rouis-Soussi, L. S., Ayeb-Zakhama, A. E., Mahjoub, A., Flamini, G., Jannet, H. B., & Harzallah-Skhiri, F. (2014). Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. EXCLI Journal, 13, 526–535.

Taswar, A., Jianguang, C., Xiuxiang, Z., Muhammad,I.& Yuanhua, W. (2017). Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate)produced by Streptomyces strain KX852460for the biological control of Rhizoctonia solaniAG-3 strain KX852461 to control target spot disease in tobacco leaf, Springer Amb Express,7(54) DOI: 10.1186/s13568-017-0351-z.

Boussaada, O., Ammar, S., Saidana, D., Chriaa, J., Chraif, I., Daami, M., Helal, A. & Mighri, Z. (2008). Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia. Microbiol Res. 163:87–95. doi: 10.1016/j.micres.2007.02.010.

Fengping, Y., Jing, S., Xiaoli, B., Baodi, M. &Min, S. (2019). Influence of molecular distillation on antioxidant and antimicrobial activities of rose essential oils, LWT Open Access, Vol 102, Pages 310-316 https://doi.org/10.1016/j.lwt.2018.12.051.

Sunita, A. & Ganesh, K. (2017). Determination of bioactive constituents from the methanolic and ethyl acetate extract of Cenchrus setigerus Vahl (Poaceae) using GC/MS, The Pharma Innov J ,6(11): 635-640. www.thepharmajournal.com

Rhetso, T., Shubharani, R., Roopa,M. & Sivaram,V.(2020) Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don, Future Journal of Pharmaceutical Sciences volume 6, Article number: 102.

P., Barua, P., Das, D., Mahanta,J., Saikia, B., Dutta, P. & Ram,L.(2021). Antifungal Activity of Selected Medicinal Plants Used by Indigenous People of Assam in India to Treat Onychomycosis, J of Herbs, Spices & Med Plants, Vol 28, Issue 2 :160- 178. doi.org/10.1080/10496475.2022.2034701.

Kurutas E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition journal, 15(1), 71. https://doi.org/10.1186/s12937-016-0186-5.

D Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini, C. & Masella R. (2007). Polyphenols, dietary sources and bioavailability. Annali-Istituto Superiore di Sanita. 43(4):348-61.

Moukette, B. M., Pieme, C. A., Njimou, J. R., Biapa, C. P., Marco, B., & Ngogang, J. Y. (2015). In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biological research, 48(1), 15. https://doi.org/10.1186/s40659-015-0003-1.

Zirihi, G, N., Mambu, L., Guédé-Guina, F., Bodo, B. & Grellier P. (2005). In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol. 26;98(3):281-5. doi: 10.1016/j.jep.2005.01.004. PMID: 15814260.

Kigondu, E.V., Rukunga, G.M., Keriko. J.M., Tonui. W.K., Gathirwa. J.W., Kirira, P.G., Irungu, B., Ingonga, J.M. & Ndiege, I.O. (2009). Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. J Ethnopharmacol. 123(3):504-9. doi: 10.1016/j.jep.2009.02.008.

Vhutshilo, N. & Peter, M. (2014). In Vitro Assessment of Cytotoxicity, Antioxidant, and Anti-Inflammatory Activities of Ricinus communis (Euphorbiaceae) Leaf Extracts, Evidence-Based Complementary and Alternative Medicine, Vol 2014 https://doi.org/10.1155/2014/625961.

Abbas, M., Ali, A., Arshad, M., Asia Atta, A., Mehmood, Z., Mahmood, T.I. & Iqbal, M. (2018). Mutagenicity, cytotoxic and antioxidant activities of Ricinus communis different parts. Chemistry Central Journal, (2018) 12:3. https://doi.org/10.1186/s13065-018-0370-0

Khan, J.A. & Yadav, K.P. (2011). Assessment of antifungal properties of Ricinus communis. J Pharm Biomed Sci. 2011;11(11).

Naz, R. & Bano, A. (2012). Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains. Asian Pac J Trop Biomed. (12):944-7. doi: 10.1016/S2221-1691(13)60004-0.

Liu, W., Yin, D., Li, N., Hou, X., Wang, D., Li, D., & Liu, J. (2016). Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticose L. and its quality assessment. Scientific Reports, 6, 28591.

Olennikov, D. N., Chirikova, N. K., Kashchenko, N. I., Gornostai, T. G., Selyutina, I. Y., & Zilfikarov, I. N. (2017). Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum. International journal of molecular sciences, 18(12), 2579. https://doi.org/10.3390/ijms18122579.




DOI: http://dx.doi.org/10.52155/ijpsat.v34.1.4572

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ochieng O Anthony, Nasif A. Mohamed, David K. Kowanga

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.