Numerical study of laminar natural convection in a half ellipsoid of revolution subjected to heat flux of constant density



In this article, we numerically study the natural convection in a half-eliipsoid of revolution filled with a Newtonian fluid (air). The ellipsoid wall is isothermal which is maintained at a heat flux of constant density. The equations that govern the flow and heat transfer are described by the so-called Navier-Stokes equation of motion accompanied by the so-called Fourier equation of heat. The finite element method is used to solve the system of equations.  We consider the effect of the shape factor of the elliptical wall and the Grashof number on the results obtained in the form of streamlines, and mean Nusselt numbers.  The Nusselt numbers for natural convection inside a system formed by a rectangular geometry and for a curved shape are comparer and analyzed each other. We find that this number is quite higher for a curved system than that of a planar shape. It shows the importance of the form factor, particularly, in circular shape which is much more advantageous compared to the straight shape.

In terms of inertia, the geometry of rounded shape ensures the best distribution of energy. In fact, the half ellipsoidal greenhouse with a circular base studied during this research offers a better distribution for the flow of the convection currents from the bottom to the top of the system.


Full Text:




Y.S. Tian et T.G. Karayiannis, Low turbulence natural convection in an air filled square cavity Part I: the thermal and fluid flow fields, Int J.of Heat and Mass Tr., 849-866 (2000).

Jain D,Modeling the performance of greenhouse with packed bed thermal storage on crop drying application, Journal of Food Engineering,71 (2005) 170-178

Lin YS, Akins RG. Thermal description of pseudo-steady-state natural convection inside a vertical cylender. Int J Heat Mass Transfer 29,301-307 (1986).

Patterson J.Imberger J .Unsteady natural convection in a rectangular cavity. J Fluid Mech 100,65-86 (1980).

J.FAUVEAU Convection naturelle dans une couche poreuse limitée par deux surfaces sphériques concentriques.Thèse de doctorat de troisième cycle,Université de Bordeaux I, 1979.

Willit D.H., Chandra P. et Peet M.M., Modelling solar Energy Storage Systems for Greenhouses, Journal of Agricultural Engineering Research, 32 (1985) 73-93.

M.Djezzar, A. Chaker, and M.Daguenet,Numerical study of bidimensional steady natural convection in a space annulus between two elliptic confocal ducts. Influence of internal accentricity. Revue des Energies Renouvelables, Volume 8, Numéro 1, Juin 2005.

S. PATANKAR. Numerical heat transfer and fluid flow0 Edition Energoatomizdat, Moscou 1984.

YOGESH JALURIA. Natural convection heat and mass transfer. Edition Mir, Moscou, 1983.

L. LANDAU et E. LIFCHITZ. Mécanique des fluides. Edition Mir, Moscou, 1971.

M.FORTIN, R.GLOWINSKI. « Méthodes de Lagrangien augmenté : application à la résolution numérique des problèmes aux limites ». Bordas Paris 1992..Edition Mir, Moscou, 1971.

P.G CIARLET « Introduction à l’analyse numérique mattricielle et à l’optimisation » Masson Paris 1990.

E. F NOGOTOV. Applications of numerical heat transfer. Me Graw Hill Book Compagny, New York, 1978.

M. Daguenet, ‘Les Séchoirs Solaires, Théorie et Pratique’, U.N.E.S.C.O, 1984.

Nishina H. et Takakura T., Greenhouse heating by means of latent heat storage units, Acta Hort (Energy in Protected Cultivation III), 148 (1984) 751-754.



  • There are currently no refbacks.

Copyright (c) 2022 RAMIARAMANANJAFY Jaona Mamy Nindrina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.