Valorisation Des Déchets De Crabes (Scylla Serrata) Dans La Culture De Champignons Comestibles Et Mycorhiziens De Madagascar

Tahina Lalaina RANDRIANANTOANDRO, Felana RAKOTONDRAVELO, Alphonse RAFENOMANANTSOA

Abstract


L’effet de l’utilisation de poudres de crabe (Scylla Serrata) dans la culture de deux champignons, comestibles et mycorhiziens, est étudié. Nous avons utilisé le milieu MNM comme substrat de culture et nous avons substitué la concentration de CaCl2 par la poudre de crabe avec différentes concentrations. Pour les hypes de Pleurotus ostreatus (PO), la poudre de crabe stimule le développement des hyphes et accélère leurs croissances par rapport au témoin. Le taux de stimulation de la croissance est de 5,01 à 34,46 %. L’hyphe de PO réagit positivement à l’augmentation progressive de la concentration de la poudre de crabe (0,05 à 5 g.L-1). L’absorption de nutriments, calcium et phosphore, est positive, mais limitée. Les résultats optimum sont obtenus avec une concentration de poudre de crabe élevée. La concentration maximale de calcium absorbée est de 0,393 g/100g (T1). Cependant, l’absorption de phosphore par les hyphes de champignons est excellente : 5,97 g/100g, avec une concentration de 5g.L-1 de poudre de crabe (T4). Pourtant, pour la culture des hyphes de Pisolithus tinctorius (PT), la poudre de crabe engendre des effets inhibiteurs sur la croissance mycélienne du champignon. La présence de poudre de crabe ralentit et freine le développement des mycéliums dès les dixièmes jours.

Keywords


déchets de crabe; Scylla serrata; champignon comestible; champignon mycorhizien; Antananarivo

Full Text:

PDF

References


FAO, (1990), « Actes du séminaire sur l’aménagement de la pêcherie de crabes des mangroves (Scylla serrata) du Nord-Ouest de Madagascar ». Direction de la Pêche et de l’aquaculture, et du Projet Régional pour le Développement et l’Aménagement des Pêches dans l’Océan Indien Sud-occidental.83p

Zhaoa W., Gu J., Wang X., Hu T., Wang J., Yu J., Dai X. and Lei L., 2021, Effects of shrimp shell powder on antibiotic resistance genes and the bacterial community during swine manure composting, Science of The Total Environment, Vol. 752, pp.142-162

Sawain A. , Chooklin C.S., Sagulsawasdipan K. and Chaichan W., 2020, Biofertilizer from Waste Crab Shell Recycling for Aquaponics Systems, IOP Conference Series: Earth and Environmental Science, 416 012014, 9p

Ramesh T, Amuthvalli A. and Boopathy R., 2020, Analysis of fermented liquid fertilizer from marine crab waste, International Journal of Environment, Agriculture and Biotechnologie, 5(3), available : http://ijeab.com/, pp. 636-642

Balkhande J.V., 2020 , Devising of organic fertilizer from fish and crab wastes: Waste to best technology, International Journal of Fisheries and Aquatic Studies, 8(2): 01-05, 5p

MacLeod J.A., Kuo S., Gallant T. L., and Grimmett M., 2006, Seafood processing wastes as nutrient sources for crop production, Canadian journal of soil science, pp. 631-640

Edward C.R., 1978, The Fertilizer Value of Shrimp and Crab Processing Wastes, Thesis, Oregon State University, 167p

Lim M.B.B, Abadilla K.A.V. , Consuegra C.C. and Lim H.R., Jr., 2021, Pulverized blue swimming crab shell utilized as partial replacement for sand in concrete mixture, The Palawan Scientist, 13(1), pp. 31-43

Pimentel de Araújo Júnior R., Montel A.L.B., Cavalcante da Silva J.E., Ascêncio S.D. and Rodrigues da Luz J.M., 2020, Use of Crab Shell (Ucides cordatus) in Portland Cement Matrices, Journal of Agricultural Science; Vol. 12, N° 1, pp. 200-208

Jones M., Kujundzic M., John S. and Bismarck A., 2020, Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment, Mar. Drugs 18 (64), 23 p

Nasir M., Rahmawati T., Dara F., 2019, Synthesis and Characterization of Biochar from Crab Shell by Pyrolysis, IOP Conf. Ser.: Mater. Sci. Eng. 553, 8p

Bamdad H., Hawboldt K., MacQuarrie S., Papari S., 2019, Application of biochar for acid gas removal: experimental and statistical analysis using CO2, Environmental Science and Pollution Research, (26), Springer, pp10902–10915

Dai L., Zhu W., He L., Tan F., Zhu N., Zhou Q., He M., Hu G., 2018, Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal, Bioresource Technology, Vol 267, pp. 510-516

Bamdad H., Hawboldt K., MacQuarrie S., 2017, A review on common adsorbents for acid gases removal: Focus on biochar, Renewable and Sustainable Energy Reviews, 16p

Dai L., Tan F., Li H., Zhu N., He M., Zhu, Q., Zhao J., 2017, Biochar riche en calcium issu de la pyrolyse de la carapace de crabe pour l'élimination du phosphore. Journal de gestion de l'environnement, 198, pp70-74

Sasria N. et al, 2021, Production of biodegradable plastics using aking rice starch and chitosan from crab shells as a substitute for conventional plastic, IOP Conf. Ser.: Mater. Sci. Eng. 1053, 10p

Faisal M. et al, 2018, Extraction of degradable bio polymer materials from shrimp shell wastes by two different methods, IOP Conf. Ser.: Mater. Sci. Eng. 464, 12p

Sterr T., Ott T., 2004, « The industrial region as a promising unit for eco-industrial development – reflections, practical experience and establishment of innovative instruments to support industrial ecology », Journal of Cleaner Production, 12, pp. 947-965

Ehrenfeld J., 2004, Industrial ecology: a new field or only a metaphor?, Journal of Cleaner Production, Vol 1,2, pp. 825-831

Van Berkel R., Willems E. and Lafleur M., 1997, Développement d'une boîte à outils d'écologie industrielle pour l'introduction de l'écologie industrielle dans les entreprises – I, Journal of Cleaner Production, 5(1-2), pp11-25

Duponnois R., Hafidi M., Ndoye I., Ramanankierana H., Bâ AM., 2013, des champignons symbiotiques contre la désertification - Ecosystemes mediterraneens, tropicaux et insulaires- IRD Edition, 512 p

Ouarraqi EM, Oihabi A., Benkhaled L. et Modafar CE., 2005, Rôle des champignons ectomycorhiziens dans l'induction des mécanismes de défense du Pin d'Alep vis-à-vis de Fusarium oxysporum. Acta Botanica Gallica 152(1). pp. 77-89.

Lourenço H.M., Gonçalves S., Ventura M., Delgado I., Rego A., Motta C., Castanheira I., Nunes M.L. and Duarte M.P., 2019, « Chemical Composition, Nutritional Value, and Safety of Cooked Female Chaceon Maritae from Namibe (Angola) », Foods, 8, 227, 17 p

Mæhre H.K., Dalheim L., Edvinsen G.K., Elvevoll E.O., and Jensen I., 2018, Protein Determination—Method Matters, Foods 7(1): 5, 11p

Moore J.C., DeVries J.W., Lipp M., Griffiths J.C., and Abernethy D.R., 2010, Total Protein Methods and Their Potential Utility to Reduce the Risk of Food Protein Adulteration, Comprehensive Reviewsin FoodScience and Food Safety, Vol.9, pp. 330-357

Haryati E., Dahlan K., Togibasa O., Dahlan K., 2019, Protein and Minerals Analyses of Mangrove Crab Shells (Scylla serrata) from Merauke as a Foundation on Bio-ceramic Components, IOP Conf. Series: Journal of Physics: Conf. Series 1204, 5p

Lage-Yusty María -Asunción, Vilasoa-Martínez María, Álvarez-Pérez Susana and López-Hernández Julia, 2011, Chemical composition of snow crab shells (Chionoecetes opilio), CyTA – Journal of Food, Vol. 9, N° 4, pp. 265–270

Antunes-Valcareggi S.A., Ferreira S.R.S., Hense H., 2017, Enzymatic Hydrolysis of Blue Crab (Callinectes Sapidus) Waste Processing to Obtain Chitin, Protein, and Astaxanthin-Enriched Extract, International Journal of Environmental & Agriculture Research (IJOEAR), Vol-3(1), pp. 81-92

Martínez M. V., Rodríguez-Bernaldo de Quirós A., Hernández J.L. and Lage Yusty M.A., 2009, Fatty Acid Profile and Total Lipid Content of Chionoecetes opilio Shells, The Open Food Science Journal, 2009, Vol 3, pp. 93-97

Mandume C.M.C., Bandarra Narcisa M., Raimundo Joana, 2019, «Chemical Composition, Nutritional Value, and Safety of Cooked Female Chaceon Maritae from Namibe (Angola) », Foods , 8, 17 p

Marques A., Teixeira B., Barrento S., Anacleto P., Carvalho M.L. and Nunes M.L., 2010, « Chemical composition of Atlantic spider crab Maja brachydactyla: Human health implications », Journal of Food Composition and Analysis (23), pp. 230–237

Sebestyén Z., Jakab E., Domán A., Bokrossy P., Bertóti I., Madarász J., László K., 2020, Thermal degradation of crab shell biomass, a nitrogen‑containing carbon precursor, Journal of Thermal Analysis and Calorimetry , (142), pp. 301–308

Kim S-B, Kim S-H, Lee K-R, Shim J-k, Lee M-W, Shim M-J, Lee U-Y and Lee T-S, 2002, The Optimal Culture Conditions for the Mycelial Growth of Oudemansiella radicata, Mycobiology 33(4): pp. 230–234

Taokaew S., Zhang X., Chuenkaek T., Kobayashi T., 2020, « Chitin from fermentative extraction of crab shells using okara as a nutrient source and comparative analysis of structural differences from chemically extracted chitin », Biochemical Engineering Journal, n° 159, 9 p

Shih P., Liao Y., Tseng Y., Deng F. and Lin C., 2019, «A Potential Antifungal Effect of Chitosan Against Candida albicans Is Mediated via the Inhibition of SAGA Complex Component Expression and the Subsequent Alteration of Cell Surface Integrity », Frontiers in Microbiology, Volume 10, 14 p

Gaikwad B. V., Koli2 J. M. and Desai A.S., 2015, Isolation and characterization of chitosan from crab (Scylla serrata)) shell waste, International Journal of Sciences & Applied Research, 2(8), pp.78-84




DOI: http://dx.doi.org/10.52155/ijpsat.v31.2.4100

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Randrianantoandro Tahina Lalaina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.