Gene’s Expression Status of ZBTB2 and TRAF6 in Breast Cancer Patients

Niloofar Ahmadi, Nemat Shahsavari, Mojtaba Mohammadnejad pahmadani

Abstract


Breast cancer is the most common type of cancer and the most common cause of cancer-related mortality among women worldwide. However, the burden is not evenly distributed and according to the best available data, there are large variations in the incidence, mortality, and survival between different countries and regions and within specific regions. Current predictions and statistics suggest that both worldwide incidence of breast cancer and related mortality are on the rise. So that many studies have been conducted on various genes in breast cancer that can help to treat this cancer. Also in this paper we investigated status expression of ZBTB2 and TRAF6 gene in 35 breast cancer tissues by Real time-PCR method. The results obtained showed that there was no significant difference of expression level of these genes between tumor samples and normal samples (P>0.05).


Full Text:

PDF

References


Althuis, M. D., Fergenbaum, J. H., Garcia-Closas, M., Brinton, L. A., Madigan, M. P., & Sherman, M. E. (2004). Etiology of hormone receptor–defined breast cancer: a systematic review of the literature. Cancer Epidemiology and Prevention Biomarkers, 13(10), 1558-1568.

Anderson, W. F., Chu, K. C., Chatterjee, N., Brawley, O., & Brinton, L. A. (2001). Tumor variants by hormone receptor expression in white patients with node-negative breast cancer from the surveillance, epidemiology, and end results database. of Clinical Oncology, 19(1), 18-27.

Chung, J. Y., Park, Y. C., Ye, H., & Wu, H. (2002). All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. of cell science, 115(4), 679-688.

Eccles, S. A., Aboagye, E. O., Ali, S., Anderson, A. S., Armes, J., Berditchevski, F., . . . Bryant, H. E. (2013). Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 15(5), R92.

Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International of Cancer, 127(12), 2893-2917.

Fisher, B., Redmond, C., Fisher, E. R., & Caplan, R. (1988). Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. of Clinical Oncology, 6(7), 1076-1087.

Gylfe, A. E., Kondelin, J., Turunen, M., Ristolainen, H., Katainen, R., Pitkänen, E., . . . Varjosalo, M. (2013). Identification of candidate oncogenes in human colorectal cancers with microsatellite instability. Gastroenterology, 145(3), 540-543. e522.

Ishida, T., Mizushima, S.-i., Azuma, S., Kobayashi, N., Tojo, T., Suzuki, K., . . . Kieff, E. (1996). Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. of Biological Chemistry, 271(46), 28745-28748.

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., & Thun, M. J. (2008). Cancer statistics, 2008. CA: a cancer for clinicians, 58(2), 71-96.

Jeon, B.-N., Choi, W.-I., Yu, M.-Y., Yoon, A.-R., Kim, M.-H., Yun, C.-O., & Hur, M.-W. (2009). ZBTB2, a novel master regulator of the p53 pathway. of Biological Chemistry, 284(27), 17935-17946.

Kobayashi, T., Walsh, M. C., & Choi, Y. (2004). The role of TRAF6 in signal transduction and the immune response. Microbes and infection, 6(14), 1333-1338.

Lee, N.-K., & Lee, S.-Y. (2002). Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). BMB Reports, 35(1), 61-66.

Liu, L., Kimball, S., Liu, H., Holowatyj, A., & Yang, Z.-Q. (2015). Genetic alterations of histone lysine methyltransferases and their significance in breast cancer. Oncotarget, 6(4), 2466.

Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H., Hanlon, M., & Vousden, K. H. (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer cell, 3(6), 577-587.

MENG Q, ZHENG M, LIU H, SONG C, ZHANG W, YAN J, QIN L AND LIU X. 2012. TRAF6 regulates proliferation, apoptosis, and invasion of osteosarcoma cell. Molecular and cellular biochemistry 371: 177-186.

Maddams, J., Brewster, D., Gavin, A., Steward, J., Elliott, J., Utley, M., & Møller, H. (2009). Cancer prevalence in the United Kingdom: estimates for 2008. British of cancer, 101(3), 541.

Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer research, 74(11), 2913-2921.

Rajandram, R., Bennett, N., Morais, C., Johnson, D., & Gobe, G. (2012). Renal cell carcinoma: resistance to therapy, role of apoptosis, and the prognostic and therapeutic target potential of TRAF proteins. Medical hypotheses, 78(2), 330-336.

Rakha, E. A., El-Sayed, M. E., Green, A. R., Paish, E. C., Powe, D. G., Gee, J., . . . Ellis, I. O. (2007). Biologic and clinical characteristics of breast cancer with single hormone receptor–positive phenotype. of Clinical Oncology, 25(30), 4772-4778.

Rothe, M., Wong, S. C., Henzel, W. J., & Goeddel, D. V. (1994). A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell, 78(4), 681-692.

RONG Y, WANG D, WU W, JIN D, KUANG T, NI X, ZHANG L AND LOU W. 2014. TRAF6 is over-expressed in pancreatic cancer and promotes the tumorigenicity of pancreatic cancer cells. Medical Oncology 31: 260.

SUN H, LI X, FAN L, WU G, LI M AND FANG J. 2014. TRAF6 is upregulated in colon cancer and promotes proliferation of colon cancer cells. The international of biochemistry & cell biology 53: 195-201.

Tao, Z., Shi, A., Lu, C., Song, T., Zhang, Z., & Zhao, J. (2015). Breast cancer: epidemiology and etiology. Cell biochemistry and biophysics, 72(2), 333-338.

WANG Y, ZHENG X, ZHANG Z, ZHOU J, ZHAO G, YANG J, XIA L, WANG R, CAI X AND HU H. 2012. MicroRNA-149 inhibits proliferation and cell cycle progression through the targeting of ZBTB2 in human gastric cancer. PloS one 7: e41693.

Weigelt, B., & Reis-Filho, J. S. (2009). Histological and molecular types of breast cancer: is there a unifying taxonomy? Nature Reviews Clinical Oncology, 6(12), 718.

Zapata, J. M., Krajewska, M., Krajewski, S., Kitada, S., Welsh, K., Monks, A., . . . Gascoyne, R. D. (2000). TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. The of Immunology, 165(9), 5084-5096.




DOI: http://dx.doi.org/10.52155/ijpsat.v9.1.410

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Arash Matin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.