Fusarium wilt and Southern Blight Diseases of Tomatoes: Trichoderma spp. as Antagonists of the Causative Organisms

Olusola Ezekiel Ayodeji, Ayodele M. Ajayi, David B. Olufolaji, Ganiyu F. Hassan

Abstract


Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) and southern blight (Sclerotium rolfsii) are two of the soil borne diseases limiting tomato cultivation globally and are difficult to manage. This study evaluated biocontrol agents, Trichoderma harzianum and T. viride for antagonistic efficacy against these pathogens in vitro. The dual culture technique was adopted using two approaches; namely, pre-inoculation of Trichoderma spp. into culture medium at 24 and 48 hours ahead of the pathogen and simultaneous inoculation of Trichoderma spp. and pathogen. The Trichoderma spp. were evaluated singly against each pathogen. The sole culture of each pathogen was the control. Each treatment was replicated thrice and laid out in a completely randomized design. Inoculated Petri plates were incubated at 27o C ± 2o C. Data collected were subjected to statistical analysis and mean separation using Minitab software. Results showed that the inhibition of the mycelial growth of both pathogens by the biocontrol agents were days dependent. Furthermore, prophylactic evaluations gave significantly higher inhibition of the mycelial growth of the pathogens as against therapeutic evaluation. Additionally, F. oxysporum was more susceptible to antagonism by both biocontrol agents as higher percentages of mycelial growth inhibition were recorded for it in all treatments. Finally, T. harzianum was a better antagonist of the two pathogens, recording 84.62% and 69.01% inhibition of mycelial growth of F. oxysporum and S. rolfsii, respectively at 9 days after inoculation. Trichoderma spp. maybe exploited as biocontrol agents for the management of these pathogens.


Keywords


Fusarium wilt, southern blight, Fusarium oxysporum, Sclerotium rolfsii, Trichoderma spp. biocontrol agents.

Full Text:

PDF

References


S. Naika, J. Van Lidt de Jeude, M. De Goffau, M. Hilmi, and B. Van Dam, “Cultivation of tomato. production, processing and marketing,” pp. 92, 2005. Available at: https://www.researchgate.net/publication/331167081_Cultivation_of_tomato_production_processing_and _marketing.

J. K. Willcox, G. L. Catignani, S. Lazarus, “Tomatoes and cardiovascular health,” Critical Reviews in Food Science and Nutrition, vol. 43, pp. 1-18, 2003. DOI: 10.1080/10408690390826437

A. E. Vinha, R. C. Alves, V. P. Sergio, A. Castro, M. B. C. Anabela, and P. P. Olivera, “Effect of Peel and Seed Removal on the Nutritional Value and Anti-oxidant Activity of Tomato (Lycopersicum esculentum. L) Fruit,” Food Science and Technology, vol. 55, pp. 192-202, 2014. DOI: 10.1016/j.lwt.2013.07.016

R. G. Olmstead, L. Bohs, H. A. Migid, E. Santiago-Valentin, V. F. Garcia, and S. M. A. Collier, “Molecular phylogeny of the solanaceae,” Taxon, vol. 57, pp. 1159-1181, 2008. DOI: 10.1002/tax.574010

FAOSTAT. Food balance sheet: Tomatoes and products, production and losses. http://www.fao.org/faostat/en/data/FBS. 2013.

M. Nowicki, E. U. Kozik, and M. R. Foolad, “Late blight of Tomato In: Translational genomics for crop breeding,” Biotic stress, vol. 1, pp. 241-266, 2013.

P. Kumar, and A. K. Sood, “Control of bacterial wilt of tomato with VAM and bacterial antagonists,” Indian Phytopathology, vol. 55, pp. 51-53, 2002.

R. S. Singh, Plant Diseases, (Eighth Ed), Oxford & IBH Publishing Co. Pvt Ltd., New Delhi, 2005, 78.

A. Ayandiji, O. R. Adeniyi, and D. Omidiji, “Determinant post-harvest losses among tomato farmers in Imeko-Afon local government area of Ogun State, Nigeria,” Global Journal of Science Frontier Research, vol. 11(5): pp. 22-28, 2011.

A. M. Ajayi, and G. F. Hassan, “Response of selected tomato (Solanum lycopersicum (L.) cultivars to on-field biotic stress,” Journal of Agricultural and Crop Research, Vol. 7(3), pp. 38-46, 2019. Doi: 10.33495/jacr_v7i3.19.110.

A. Akkopru, and S. Demir, “Biological control of fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some Rhizobacteria,” Journal of Phytopathology, vol. 153, pp. 544-550, 2005, http://dx.doi.org/10.1111/j.1439-0434.2005.01018.x

J. B. Ristaino, K. B. Perry, and R. D. Lumsden, “Effect of solarization and Gliocladium virens on Sclerotium rolfsii, soil microbiota, and disease incidence on tomato,” Phytopathology, vol. 81, pp. 117-1124, 1991.

M. Moretti, G. Gilardi, M. L. Gullino, and A. Garibaldi, “Biological control potential of Achromobacter xylosoxydans for suppressing fusarium wilt of tomato,” International. Journal of Botany, vol. 4, pp. 369–375, 2008. DOI: 10.3923/ijb.2008.369.375

K. Liamngee, Y. H. Zakki, and D. O. Onah, “Sclerotium rolfsii; Causative organism of southern blight, stem rot, white mold and sclerotia rot disease,” Annals of Biological Research, vol. 6 (11), pp. 78-89, 2015.

S. K. Dwivedi, and G. Prasad, “Integrated management of Sclerotium rolfsii: an overview,” European Journal of Biomedical and Pharmaceutical Sciences, vol. 3(11), pp. 137-146, 2016.

Z. K. Punja, “The biology, ecology, and control of Sclerotium rolfsii,” Annual Review of Phytopathology, vol 23, pp. 97–127, 1985. https://doi.org/10.1146/annurev.py.23.090185.000525

G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, “Trichoderma species opportunistic, avirulent plant symbionts,” Nature Reviews Microbiology, vol. 2(1), pp. 43- 56, 2004. https://doi.org/10.1038/nrmicro797

F. Vinale, K. Sivasithamparam, L. E. Ghisalberti, R. Marra, L. S. Woo, and M. Lorito, “Trichoderma-plant-pathogen interactions,” Soil Biology and Biochemistry, vol. 40, pp. 1-10, 2008. https://doi.org/10.1016/j.soilbio.2007.07.002

H. Barnett, and L. Hunter, Illustrated genera of imperfect fungi 4th (ed). American phytopathological society. St. Paul, Minnesota, USA. 1998, 218.

F. M. Dugan, The identification of fungi. An illustrated introduction with keys, glossary and guide to literature. American phytopathological society, St. Paul, Minnesota, USA. 2005, 176 pp.

B. N. Chakraborty, U. Chakraborty, A. Saha, P. L. Dey, and K. Sumar, “Morphological and molecular characterization of Trichoderma isolates of North Bengal,” Journal of Mycology and Plant Pathology, vol. 41(2), pp. 207-214, 2011.

M. M. Shah, and H. Afiya, “Identification and isolation of Trichoderma spp.; their significance in agriculture, human health, industrial and environmental application,” p. 12, 2019. Intech Open. DOI: http://dx.doi.org/10.5772/ntechopen.83528.

S. Shaiesta, N. Sahera, and P. A. Sheikh, “Cultural and morphological characterization of Trichoderma spp. Associated with green mold disease of Pleurotus spp. In Kashmir,” Research Journal of microbiology, vol. 7, pp. 139-144, 2012.

L. Murugan, N. Krishnan, V. Venkatarvanappa, S. Saha, A. K. Mishra, B. K. Sharma, and A. B. Rai, “Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India,”.3Biotech, vol. 10(486), pp. 1-12, 2020. https://doi.org/10.1007/s13205-020-02475-z

S. Mahadevankumar, V. Yadav, G. S. Tejaswini, and G. R. Janardhana, “Morphological and molecular characterization of Sclerotium rolfsii associated with fruit rot of Cucurbita maxima,” European Journal of Plant Pathology, vol. 145, pp. 215-219, 2015. DOI: https://doi.org/10.1007/s10658-015-0818-1.

M. A. H. B. Bhuiyan, M. T. Rahman, and K. A. Bhuiyan, “In vitro screening of fungicides and anatagonists against Sclerotium rolfsii,”

African Journal of Biotechnology, vol. 11(82), pp. 14822-14827, 2012. DOI:10.5897/AJB12.1463.

K. Doley, and P. K. Jite, In vitro efficacy of Trichoderma viride against Sclerotium rolfsii and Macrophomina phaseolina,” Notulae

Scientia Biologicae, vol. 4(4), p. 39, 2012. DOI: https://doi.org/10.15835/nsb447818

M. Babychanand, and S. Simon, “Efficacy of Trichoderma spp. against Fusarium oxysporum f. sp. lycopersici (FOL) infecting pre-and-post seedling of tomato,” Journal of Pharmacognosy and Phytochemistry, vol. 6(4), pp. 616-619, 2017.

R. M. Barakat, F. Al-Mahareeq, and M. I. Al-Maris, “Biological control of Sclerotium rolfsii by using Trichoderma spp. isolates from Palestine,” Hebron University Research Journal, vol. 2(2), pp. 27-47, 2001.

Y. Brotman, J. G. Kapuganti, and A. Viterbo, “Trichoderma,” Current Biology, vol. 20, pp. 390–391, 2010. DOI:10.1016/J.CUB.2010.02.04

J. Nawrocka, and U. Małolepsza, “Diversity in plant systemic resistance induced by Trichoderma,” Biological Control, vol. 67, pp. 149-156, 2013. https://doi.org/10.1016/j.biocontrol.2013.07.005

M. Lorito, V. Farkas, S. Rebuffat, B. Bodo, and C. P. Kubicek, “Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum,” Journal of Bacteriology, vol. 178, pp. 6382–6385, 1996. doi: 10.1128/jb.178.21.6382-6385.1996.

B. Baiyee, C. Pornsuriya, S. I. Ito, and A. Sunpapao, “Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria,” Biological Control, vol. 129, pp. 195–200, 2019.

B. Sanchez-Montesinos, M. Santos, A. Moreno-Gavira, T. Marin-Rodulfo, F. J. Gea, and F. Dianez, “Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides,” Journal of fungi, vol. 7, p. 598, 2021. https://doi.org/10.3390/jof7080598




DOI: http://dx.doi.org/10.52155/ijpsat.v29.1.3542

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Olusola Ezekiel Ayodeji

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.