3D Bioprinting for Tissue Engineering Application Review

Maged Naser, Mohamed MN, Lamia H. Shehata, Laila Abdelfattah

Abstract


Three-dimensional (3D) printing (rapid prototyping or additive fabricating innovations) has gotten significant consideration in different fields in the course of recent many years. Tissue engineering uses of 3D bioprinting, specifically, have attracted the attention of numerous researchers. 3D platforms delivered by the 3D bioprinting of biomaterials (bio-inks) empower the recovery and rebuilding of different tissues and organs. These 3D bioprinting methods are helpful for creating platforms for biomedical and regenerative medication and tissue engineering applications, allowing quick production with high-accuracy and control over size, porosity, and shape. In this review, we present an assortment of tissue designing applications to make bones, vascular, skin, ligament, and neural structures utilizing an assortment of 3D bioprinting strategies.


Keywords


Bioprinting, Scaffold, Bio-ink, Tissue engineering

Full Text:

PDF

References


- Amini, A.R., Laurencin, C.T. and Nukavarapu, S.P., 2012. Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering, 40(5).

- Gu, X., Ding, F. and Williams, D.F., 2014. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 35(24), pp.6143-6156.

- Jung, J.P., Bhuiyan, D.B. and Ogle, B.M., 2016. Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterial’s research, 20(1), pp.1-11.

- Kim, J.E., Kim, S.H. and Jung, Y., 2016. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue engineering and regenerative medicine, 13(6), pp.636-646.

- Kim, J.E., Kim, S.H. and Jung, Y., 2016. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue engineering and regenerative medicine, 13(6), pp.636-646.

- Howard, D., Buttery, L.D., Shake Sheff, K.M. and Roberts, S.J., 2008. Tissue engineering: strategies, stem cells and scaffolds. Journal of anatomy, 213(1), pp.66-72.

- O'brien, F.J., 2011. Biomaterials & scaffolds for tissue engineering. Materials today, 14(3), pp.88-95.

- Knight, E. and Przyborski, S., 2015. Advances in 3D cell culture technologies enabling tissue‐like structures to be created in vitro. Journal of anatomy, 227(6), pp.746-756.

- Shivalkar, S. and Singh, S., 2017. Solid freeform techniques application in bone tissue engineering for scaffold fabrication. Tissue engineering and regenerative medicine, 14(3), pp.187-200.

- Chan, B.P. and Leong, K.W., 2008. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European spine journal, 17(4), pp.467-479.

- Gu, B.K., Park, S.J., Kim, M.S., Kang, C.M., Kim, J.I. and Kim, C.H., 2013. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydrate Polymers, 97(1), pp.65-73.

- Ma, H. and Xue, L., 2014. Carbon nanotubes reinforced poly (L-lactide) scaffolds fabricated by thermally induced phase separation. Nanotechnology, 26(2), p.025701.

- Oh, S.H., Kang, S.G., Kim, E.S., Cho, S.H. and Lee, J.H., 2003. Fabrication and characterization of hydrophilic poly (lactic-co-glycolic acid)/poly (vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials, 24(22), pp.4011-4021.

- Gu, B.K., Choi, D.J., Park, S.J., Kim, M.S., Kang, C.M. and Kim, C.H., 2016. 3-dimensional bioprinting for tissue engineering applications. Biomaterial’s research, 20(1), pp.1-8.

- Gu, Q., Tomaskovic‐Crook, E., Lozano, R., Chen, Y., Kapsa, R.M., Zhou, Q., Wallace, G.G. and Crook, J.M., 2016. Functional 3D neural mini‐tissues from printed gel‐based bioink and human neural stem cells. Advanced healthcare materials, 5(12), pp.1429-1438.

- Kruth, J.P., Leu, M.C. and Nakagawa, T., 1998. Progress in additive manufacturing and rapid prototyping. Cirp Annals, 47(2), pp.525-540.

- Bikas, H., Stavropoulos, P. and Chryssolouris, G., 2016. Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology, 83(1-4), pp.389-405.

- Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C.M., Unterhinninghofen, R., Kauczor, H.U. and Giesel, F.L., 2010. 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery, 5(4), pp.335-341. [19]- Wong, K.V. and Hernandez, A., 2012. A review of additive manufacturing. International scholarly research notices, 2012.

-Quan, Z., Wu, A., Keefe, M., Qin, X., Yu, J., Suhr, J., Byun, J.H., Kim, B.S. and Chou, T.W., 2015. Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Materials Today, 18(9), pp.503-512.

- Holmes, L.R. and Riddick, J.C., 2014. Research summary of an additive manufacturing technology for the fabrication of 3D composites with tailored internal structure. Jom, 66(2), pp.270-274.

- Wang, X., Ao, Q., Tian, X., Fan, J., Wei, Y., Hou, W., Tong, H. and Bai, S., 2016. 3D bioprinting technologies for hard tissue and organ engineering. Materials, 9(10), p.802.

- Turner, B.N., Strong, R. and Gold, S.A., 2014. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal.

- Land II, W.S., Zhang, B., Ziegert, J. and Davies, A., 2015. In-situ metrology system for laser powder bed fusion additive process. Procedia Manufacturing, 1, pp.393-403.

- Ahn, D., Kweon, J.H., Choi, J. and Lee, S., 2012. Quantification of surface roughness of parts processed by laminated object manufacturing. Journal of Materials Processing Technology, 212(2), pp.339-346.

- Bose, S., Roy, M. and Bandyopadhyay, A., 2012. Recent advances in bone tissue engineering scaffolds. Trends in biotechnology, 30(10), pp.546-554.

- Mravic, M., Péault, B. and James, A.W., 2014. Current trends in bone tissue engineering. BioMed research international, 2014.

- Stevens, M.M., 2008. Biomaterials for bone tissue engineering. Materials today, 11(5), pp.18-25.

- Henkel, J., Woodruff, M.A., Epari, D.R., Steck, R., Glatt, V., Dickinson, I.C., Choong, P.F., Schuetz, M.A. and Hutmacher, D.W., 2013. Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone research, 1(1), pp.216-248.

- Shin, M., Yoshimoto, H. and Vacanti, J.P., 2004. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue engineering, 10(1-2), pp.33-41.

- Wu, H., Lei, P., Liu, G., Zhang, Y.S., Yang, J., Zhang, L., Xie, J., Niu, W., Liu, H., Ruan, J. and Hu, Y., 2017. Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly (L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies. Scientific reports, 7(1), pp.1-14.

- Wu, T., Yu, S., Chen, D. and Wang, Y., 2017. Bionic design, materials and performance of bone tissue scaffolds. Materials, 10(10), p.1187.

- Lee, K., Silva, E.A. and Mooney, D.J., 2011. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of the Royal Society Interface, 8(55), pp.153-170.

- Bose, S., Vahabzadeh, S. and Bandyopadhyay, A., 2013. Bone tissue engineering using 3D printing. Materials today, 16(12), pp.496-504.

- Mota, R.C.D.A.G., da Silva, E.O., de Lima, F.F., de Menezes, L.R. and Thiele, A.C.S., 2016. 3D printed scaffolds as a new perspective for bone tissue regeneration: literature review. Materials Sciences and Applications, 7(8), pp.430-452.

- Mota, R.C.D.A.G., da Silva, E.O., de Lima, F.F., de Menezes, L.R. and Thiele, A.C.S., 2016. 3D printed scaffolds as a new perspective for bone tissue regeneration: literature review. Materials Sciences and Applications, 7(8), pp.430-452.

- Jung, J.P., Bhuiyan, D.B. and Ogle, B.M., 2016. Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterial’s research, 20(1), pp.1-11.

- Corcione, C.E., Gervaso, F., Scalera, F., Montagna, F., Maiullaro, T., Sannino, A. and Maffezzoli, A., 2017. 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. Journal of Polymer Engineering, 37(8), pp.741-746.

- Wang, X., Tolba, E., Schröder, H.C., Neufurth, M., Feng, Q., Diehl-Seifert, B. and Müller, W.E., 2014. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One, 9(11), p.e112497.

- Benam, K.H., Dauth, S., Hassell, B., Herland, A., Jain, A., Jang, K.J., Karalis, K., Kim, H.J., MacQueen, L., Mahmoodian, R. and Musah, S., 2015. Engineered in vitro disease models. Annual Review of Pathology: Mechanisms of Disease, 10, pp.195-262.

-Imamura, Y., Mukohara, T., Shimono, Y., Funakoshi, Y., Chayahara, N., Toyoda, M., Kiyota, N., Takao, S., Kono, S., Nakatsura, T. and Minami, H., 2015. Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Oncology reports, 33(4), pp.1837-1843.

- Tian, X.F., Heng, B.C., Ge, Z., Lu, K., Rufaihah, A.J., Fan, V.W., Yeo, J.F. and Cao, T., 2008. Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems. Scandinavian journal of clinical and laboratory investigation, 68(1), pp.58-67.

- Zhang, D., Pekkanen-Mattila, M., Shahsavani, M., Falk, A., Teixeira, A.I. and Herland, A., 2014. A 3D Alzheimer's disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials, 35(5), pp.1420-1428.

- Zhang, X.D., Chen, J., Min, Y., Park, G.B., Shen, X., Song, S.S., Sun, Y.M., Wang, H., Long, W., Xie, J. and Gao, K., 2014. Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Advanced Functional Materials, 24(12), pp.1718-1729. [45]- Haring, A.P., Sontheimer, H. and Johnson, B.N., 2017. Microphysiological human brain and neural systems-on-a-chip: potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine. Stem cell reviews and reports, 13(3), pp.381-406.

- Jo, J., Xiao, Y., Sun, A.X., Cukuroglu, E., Tran, H.D., Göke, J., Tan, Z.Y., Saw, T.Y., Tan, C.P., Lokman, H. and Lee, Y., 2016. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell stem cell, 19(2), pp.248-257.

- Kato‐Negishi, M., Morimoto, Y., Onoe, H. and Takeuchi, S., 2013. Millimeter‐Sized Neural Building Blocks for 3D Heterogeneous Neural Network Assembly. Advanced healthcare materials, 2(12), pp.1564-1570.

- Tang-Schomer, M.D., White, J.D., Tien, L.W., Schmitt, L.I., Valentin, T.M., Graziano, D.J., Hopkins, A.M., Omenetto, F.G., Haydon, P.G. and Kaplan, D.L., 2014. Bioengineered functional brain-like cortical tissue. Proceedings of the National Academy of Sciences, 111(38), pp.13811-13816.

- Xu, T., Gregory, C.A., Molnar, P., Cui, X., Jalota, S., Bhaduri, S.B. and Boland, T., 2006. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19), pp.3580-3588.

- Ilkhanizadeh, S., Teixeira, A.I. and Hermanson, O., 2007. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials, 28(27), pp.3936-3943.

- Lee, Y.B., Polio, S., Lee, W., Dai, G., Menon, L., Carroll, R.S. and Yoo, S.S., 2010. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Experimental neurology, 223(2), pp.645-652.

- Owens, C.M., Marga, F., Forgacs, G. and Heesch, C.M., 2013. Biofabrication and testing of a fully cellular nerve graft. Biofabrication, 5(4), p.045007.

- Hsieh, F.Y., Lin, H.H. and Hsu, S.H., 2015. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 71, pp.48-57.

- Colton, C.K., 1995. Implantable biohybrid artificial organs. Cell transplantation, 4(4), pp.415-436.

- Richards, D., Jia, J., Yost, M., Markwald, R. and Mei, Y., 2017. 3D bioprinting for vascularized tissue fabrication. Annals of biomedical engineering, 45(1), pp.132-147.

- Santos, M.I. and Reis, R.L., 2010. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromolecular bioscience, 10(1), pp.12-27.

- Lee, V., Singh, G., Trasatti, J.P., Bjornsson, C., Xu, X., Tran, T.N., Yoo, S.S., Dai, G. and Karande, P., 2014. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering Part C: Methods, 20(6), pp.473-484.

- Lee, V.K., Lanzi, A.M., Ngo, H., Yoo, S.S., Vincent, P.A. and Dai, G., 2014. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cellular and molecular bioengineering, 7(3), pp.460-472.

- Ozbolat, I.T., 2015. Bioprinting scale-up tissue and organ constructs for transplantation. Trends in biotechnology, 33(7), pp.395-400.

- Cui, X. and Boland, T., 2009. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 30(31), pp.6221-6227.

- Norotte, C., Marga, F.S., Niklason, L.E. and Forgacs, G., 2009. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30), pp.5910-5917.

- Wu, W., DeConinck, A. and Lewis, J.A., 2011. Omnidirectional printing of 3D microvascular networks. Advanced materials, 23(24), pp.H178-H183.

- Kolesky, D.B., Truby, R.L., Gladman, A.S., Busbee, T.A., Homan, K.A. and Lewis, J.A., 2014. 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Advanced materials, 26(19), pp.3124-3130.

- Jia, W., Gungor-Ozkerim, P.S., Zhang, Y.S., Yue, K., Zhu, K., Liu, W., Pi, Q., Byambaa, B., Dokmeci, M.R., Shin, S.R. and Khademhosseini, A., 2016. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106, pp.58-68.

- Pimentel, R., Ko, S.K., Caviglia, C., Wolff, A., Emnéus, J., Keller, S.S. and Dufva, M., 2018. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta biomaterialia, 65, pp.174-184.

- Church, D., Elsayed, S., Reid, O., Winston, B. and Lindsay, R., 2006. Burn wound infections. Clinical microbiology reviews, 19(2), pp.403-434.

- Andreassi, A., Bilenchi, R., Biagioli, M. and D'Aniello, C., 2005. Classification and pathophysiology of skin grafts. Clinics in dermatology, 23(4), pp.332-337.

- Loss, M., Wedler, V., Künzi, W., Meuli-Simmen, C. and Meyer, V.E., 2000. Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns, 26(7), pp.644-652.

- Sheridan, R., 2009. Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clinics in plastic surgery, 36(4), pp.643-651.

- Jean J, Garcia-Perez ME, Pouliot R (2011) Bioengineered skin: the self-assembly approach. J Tissue Sci Eng S5:001.

- Sheridan, R., 2009. Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clinics in plastic surgery, 36(4), pp.643-651.

- MacNeil, S., 2007. Progress and opportunities for tissue-engineered skin. Nature, 445(7130), pp.874-880.

-Shevchenko, R.V., James, S.L. and James, S.E., 2010. A review of tissue-engineered skin bioconstructs available for skin reconstruction. Journal of the royal Society Interface, 7(43), pp.229-258.

- Trottier, V., Marceau‐Fortier, G., Germain, L., Vincent, C. and Fradette, J., 2008. IFATS collection: Using human adipose‐derived stem/stromal cells for the production of new skin substitutes. Stem cells, 26(10), pp.2713-2723.

- Aj, S., 1999. Clark RA. Cutaneous wound healing. N Engl j Med, 341(10), pp.738-746.

- Koch, L., Kuhn, S., Sorg, H., Gruene, M., Schlie, S., Gaebel, R., Polchow, B., Reimers, K., Stoelting, S., Ma, N. and Vogt, P.M., 2010. Laser printing of skin cells and human stem cells. Tissue Engineering Part C: Methods, 16(5), pp.847-854.

- Koch, L., Deiwick, A., Schlie, S., Michael, S., Gruene, M., Coger, V., Zychlinski, D., Schambach, A., Reimers, K., Vogt, P.M. and Chichkov, B., 2012. Skin tissue generation by laser cell printing. Biotechnology and bioengineering, 109(7), pp.1855-1863.

- Michael, S., Sorg, H., Peck, C.T., Koch, L., Deiwick, A., Chichkov, B., Vogt, P.M. and Reimers, K., 2013. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one, 8(3), p.e57741.

-Hou, X., Liu, S., Wang, M., Wiraja, C., Huang, W., Chan, P., Tan, T. and Xu, C., 2017. Layer-by-layer 3D constructs of fibroblasts in hydrogel for examining transdermal penetration capability of nanoparticles. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 22(4), pp.447-453.

- Cubo, N., Garcia, M., Del Cañizo, J.F., Velasco, D. and Jorcano, J.L., 2016. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication, 9(1), p.015006.

- Xu, J., Zheng, S., Hu, X., Li, L., Li, W., Parungao, R., Wang, Y., Nie, Y., Liu, T. and Song, K., 2020. Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers, 12(6), p.1237.

- Gu, B.K., Choi, D.J., Park, S.J., Kim, Y.J. and Kim, C.H., 2018. 3D bioprinting technologies for tissue engineering applications. Cutting-Edge Enabling Technologies for Regenerative Medicine, pp.15-28.

- Hutmacher, D.W., 2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), pp.2529-2543.

-Hunziker, E.B., 2002. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and cartilage, 10(6), pp.432-463.

- Kundu, J., Shim, J.H., Jang, J., Kim, S.W. and Cho, D.W., 2015. An additive manufacturing‐based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. Journal of tissue engineering and regenerative medicine, 9(11), pp.1286-1297.

- Kesti, M., Eberhardt, C., Pagliccia, G., Kenkel, D., Grande, D., Boss, A. and Zenobi‐Wong, M., 2015. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Advanced Functional Materials, 25(48), pp.7406-7417.

- Ren, X., Wang, F., Chen, C., Gong, X., Yin, L. and Yang, L., 2016. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC musculoskeletal disorders, 17(1), pp.1-10.

- Berger, M.F., Lawrence, M.S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A.Y., Sboner, A., Esgueva, R., Pflueger, D., Sougnez, C. and Onofrio, R., 2011. The genomic complexity of primary human prostate cancer. Nature, 470(7333), pp.214-220.

- Gu, B.K., Choi, D.J., Park, S.J., Kim, Y.J. and Kim, C.H., 2018. 3D bioprinting technologies for tissue engineering applications. Cutting-Edge Enabling Technologies for Regenerative Medicine, pp.15-28.

- Bildziukevich, U., Rárová, L., Šaman, D. and Wimmer, Z., 2018. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis. European journal of medicinal chemistry, 145, pp.41-50.

- Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P. and Langer, R., 2006. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences, 103(16), pp.6315-6320.

- Kukowska-Latallo, J.F., Candido, K.A., Cao, Z., Nigavekar, S.S., Majoros, I.J., Thomas, T.P., Balogh, L.P., Khan, M.K. and Baker, J.R., 2005. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer research, 65(12), pp.5317-5324.

- Wang, F., Tang, J., Li, P., Si, S., Yu, H., Yang, X., Tao, J., Lv, Q., Gu, M., Yang, H. and Wang, Z., 2018. Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis. Cellular Physiology and Biochemistry, 45(1), pp.54-66.

- Snyder, J.E., Hamid, Q., Wang, C., Chang, R., Emami, K., Wu, H. and Sun, W., 2011. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication, 3(3), p.034112.

-Huang, T.Q., Qu, X., Liu, J. and Chen, S., 2014. 3D printing of biomimetic microstructures for cancer cell migration. Biomedical microdevices, 16(1), pp.127-132.

- Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhang, T., Zhang, K., Cheng, S. and Sun, W., 2014. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 6(3), p.035001.

- Lee, S.J., Rhie, J.W. and Cho, D.W., 2008. Development of three-dimensional alginate encapsulated chondrocyte hybrid scaffold using microstereolithography. Journal of manufacturing science and engineering, 130(2).

- Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hagg, D. and Gatenholm, P., 2015. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16(5), pp.1489-1496.

- Mazzocchi, A., Devarasetty, M., Huntwork, R., Soker, S. and Skardal, A., 2018. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication, 11(1), p.015003.

- Lee, H., Han, W., Kim, H., Ha, D.H., Jang, J., Kim, B.S. and Cho, D.W., 2017. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules, 18(4), pp.1229-1237.

- Kim, J.H., Seol, Y.J., Ko, I.K., Kang, H.W., Lee, Y.K., Yoo, J.J., Atala, A. and Lee, S.J., 2018. 3D bioprinted human skeletal muscle constructs for muscle function restoration. Scientific reports, 8(1), pp.1-15.

- Abelseth, E., Abelseth, L., De la Vega, L., Beyer, S.T., Wadsworth, S.J. and Willerth, S.M., 2018. 3D printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink. ACS Biomaterials Science & Engineering, 5(1), pp.234-243.

- Ouyang, L., Highley, C.B., Rodell, C.B., Sun, W. and Burdick, J.A., 2016. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomaterials Science & Engineering, 2(10), pp.1743-1751.

- Noh, I., Kim, N., Tran, H.N., Lee, J. and Lee, C., 2019. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomaterial’s research, 23(1), pp.1-9.

- Zheng, Z., Wu, J., Liu, M., Wang, H., Li, C., Rodriguez, M.J., Li, G., Wang, X. and Kaplan, D.L., 2018. 3D bioprinting of self‐standing silk‐based bioink. Advanced healthcare materials, 7(6), p.1701026.

- Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M. and D'Lima, D.D., 2012. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 18(11-12), pp.1304-1312.

- Byambaa, B., Annabi, N., Yue, K., Trujillo‐de Santiago, G., Alvarez, M.M., Jia, W., Kazemzadeh‐Narbat, M., Shin, S.R., Tamayol, A. and Khademhosseini, A., 2017. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Advanced healthcare materials, 6(16), p.1700015.

- Irmak, G., Demirtaş, T.T. and Gümüşderelioǧlu, M., 2018. Highly methacrylated gelatin bioink for bone tissue engineering. ACS Biomaterials Science & Engineering, 5(2), pp.831-845. [109]- Pahlevanzadeh, F., Mokhtari, H., Bakhsheshi-Rad, H.R., Emadi, R., Kharaziha, M., Valiani, A., Poursamar, S.A., Ismail, A.F., RamaKrishna, S. and Berto, F., 2020. Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications. Materials, 13(18), p.3980. [110]- Biazar, E., Najafi S, M., Heidari K, S., Yazdankhah, M., Rafiei, A. and Biazar, D., 2018. 3D bio-printing technology for body tissues and organs regeneration. Journal of medical engineering & technology, 42(3), pp.187-202.

- Sears, N.A., Seshadri, D.R., Dhavalikar, P.S. and Cosgriff-Hernandez, E., 2016. A review of three-dimensional printing in tissue engineering. Tissue Engineering Part B: Reviews, 22(4), pp.298-310.

- Tejo-Otero, A., Buj-Corral, I. and Fenollosa-Artés, F., 2020. 3D printing in medicine for preoperative surgical planning: a review. Annals of biomedical engineering, 48(2), pp.536-555. [113]- Kirillova, A., Bushev, S., Abubakirov, A. and Sukikh, G., 2020. Bioethical and Legal Issues in 3D Bioprinting. International Journal of Bioprinting, 6(3).

- Ulucan-Karnak, F., 2021. 3D Bioprinting in Medicine. Global Journal of Biotechnology and Biomaterial Science, 7(1), pp.001-005.

- Hong, N., Yang, G.H., Lee, J. and Kim, G., 2018. 3D bioprinting and its in vivo applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(1), pp.444-459.




DOI: http://dx.doi.org/10.52155/ijpsat.v25.2.2916

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Maged Naser, Mohamed MN, Lamia H. Shehata, Laila Abdelfattah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.