The Carbon Footprint Of Smallholder Dairy Farming In Sub-Saharan Africa: A Review

Janvier HAKUZIMANA, Divin Jean Paul Munyambonera, Jean de Dieu Habimana

Abstract


Agriculture sector is one of major sources of income and livelihood to many populations of Sub-Saharan Africa (SSA). Over the past years animal production has been playing a vital role not only in generating revenues to farmers but also as a source of high qualitative proteins and essential micronutrients (i.e iron, zinc and vitamins) and boosting the agricultural productivity due to its importance in farmyards organic fertilization (i.e manure). Livestock production and Milk market in SSA are dominated by smallholder dairy farming (SDF) which employ nearly 70% of all livestock farmers. Despite its positive impact on people and SSA countries’ economy, SDF has been the major fastest growing agricultural contributors of GHG emissions such as CH4, N2O and CO2 (i.e 9t CO2e per tonne of milk; the highest in the world compared to other regions) thus accelerating global warming effect.

Although several articles have investigated the impacts of livestock production on climate change, to the best of our knowledge the existing literature doesn’t contain any studies that provide insight review of smallholder dairy farming’s carbon footprint (CF) in SSA. This review paper is therefore aimed at critical analysis of current knowledge in terms of CF of smallholder dairy farming in SSA and effective mitigation strategies (dietary, manure and animal management) recently proposed to reduce CH4 and N2O emissions from ruminants. SSA was selected because of rapid rise of SDF in the region therefore it is expected to rapidly increase its GHG emissions in future if no sustainable measures are taken.

The critical analysis, what is known and gaps in SDF from this review will help to inform the farmers, researchers, decision and policy makers interested in GHG emissions thus to provide the next direction in research and improvement of the sector for sustainability. Capacity building for raising awareness among farmers was identified as paramount to better understand the issue and the options to mitigate emissions on-farm. As longer as adaptation and mitigation strategies become paramount on national and regional agenda, SDF will make significant contribution to economies, improved livelihood and become sustainable livestock production systems in SSA at large.


Keywords


Smallholder farming, Sub-Saharan Africa, Carbon footprint, Greenhouse Gases, GHG, Global warming, Climate change, Enteric fermentation

Full Text:

PDF

References


M. Roser and E. Ortiz-Ospina, “World Population Growth- Our World in Data,” Population Reference Bureau. 2017.

ONU, World Population Prospects 2019: Highlights. 2019.

United Nations, “Population,” 2020. https://www.un.org/en/sections/issues-depth/population/index.html.

L. Cockx, L. Colen, and J. De Weerdt, “From corn to popcorn? Urbanization and dietary change: Evidence from rural-urban migrants in Tanzania,” World Dev., 2018, doi: 10.1016/j.worlddev.2018.04.018.

H. H. Vorster, A. Kruger, and B. M. Margetts, “The nutrition transition in Africa: can it be steered into a more positive direction?,” Nutrients. 2011, doi: 10.3390/nu3040429.

FAO, “Greenhouse Gas Emissions from the Dairy Sector A Life Cycle Assessment,” FOOD Agric. Organ. UNITED NATIONS Anim. Prod. Heal. Div., 2010, doi: 10.1016/S0301-4215(01)00105-7.

C. Opio et al., Greenhouse gas emissions from ruminant supply chains–A global life cycle assessment. Food and agriculture organization of the United Nations, 2013.

A. S. Cohn et al., “Smallholder Agriculture and Climate Change,” Annu. Rev. Environ. Resour., 2017, doi: 10.1146/annurev-environ-102016-060946.

J. Ssozi, S. Asongu, and V. H. Amavilah, “The effectiveness of development aid for agriculture in Sub-Saharan Africa,” J. Econ. Stud., 2019, doi: 10.1108/JES-11-2017-0324.

T. Harris and T. H. Consulting, “Africa agriculture status report 2014: Climate change and smallholder agriculture in Sub-Saharan Africa,” Alliance for a Green Revolution in Africa (AGRA), 2014.

J. Hakuzimanaa and B. Masasib, “Performance evaluation of irrigation schemes in Rugeramigozi marshland, Rwanda,” Water Conserv. Manag., vol. 4, no. 1, pp. 15–19, 2020.

K. K. Boateng, G. Y. Obeng, and E. Mensah, “Agricultural Greenhouse Gases from Sub-Saharan Africa,” in Greenhouse Gas Emissions, Springer, 2019, pp. 73–85.

T. F. Stocker et al., “IPCC, 2013: summary for policymakers in climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change,” Camb. Univ. Press Camb. UKNY NY USA, 2013.

D. Gollin, “Smallholder agriculture in Africa: An overview and implications for policy IIED Working Paper IIED,” London [Google Sch., 2014.

IFAD, “Smallholders can feed the world.” Institute for Food and Agricultural Development, 2011.

K. Descheemaeker, S. J. Oosting, S. Homann-Kee Tui, P. Masikati, G. N. Falconnier, and K. E. Giller, “Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: a call for integrated impact assessments,” Reg. Environ. Chang., 2016, doi: 10.1007/s10113-016-0957-8.

M. G. G. Chagunda et al., “Assessing and managing intensification in smallholder dairy systems for food and nutrition security in Sub-Saharan Africa,” Reg. Environ. Chang., 2016, doi: 10.1007/s10113-015-0829-7.

J. K. Nyameasem and F. Reinsch, T. Und, C. Malisch Taube, “The potential of dairy production in sub-Saharan Africa,” 2018.

V. Sejian et al., “Global warming: role of livestock,” in Climate Change Impact on Livestock: Adaptation and Mitigation, Springer, 2015, pp. 141–169.

A. Flysjö, Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products. Aarhus University, Department of Agroecology, 2012.

P. Smith et al., “Agriculture, forestry and other land use (AFOLU),” in Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2014, pp. 811–922.

B. Praveen and P. Sharma, “A review of literature on climate change and its impacts on agriculture productivity,” J. Public Aff., vol. 19, no. 4, p. e1960, 2019.

FAO and GDP., “Climate change and the global dairy cattle sector – The role of the dairy sector in a low-carbon future.,” Rome, 2018.

P. Mayuni, D. Chiumia, T. Gondwe, L. Banda, M. Chagunda, and D. Kazanga, “Greenhouse gas emissions in smallholder dairy farms in Malawi,” Livest. Res. Rural Dev., 2019.

M. J. Otte and P. Chilonda, “Cattle and small ruminant production systems in sub-Saharan Africa. A systematic review,” 2002.

G. Tadesse and M. Dereje, “Impact of climate change on smallholder dairy production and coping mechanism in Sub-Saharan Africa-review,” Agric. Res. Technol., vol. 16, 2018.

A. Wilkes, S. Wassie, C. Odhong, S. Fraval, and S. van Dijk, “Variation in the carbon footprint of milk production on smallholder dairy farms in central Kenya,” J. Clean. Prod., 2020, doi: 10.1016/j.jclepro.2020.121780.

FAOstat, “Food and Agriculture Organization of the United Nations,” 2020. http://www.fao.org/faostat/en/#data/QA/metadata (accessed May 10, 2020).

OECD/FAO, “‘Agriculture in Sub-Saharan Africa: Prospects and challenges for the next decade’, in OECD-FAO Agricultural Outlook 2016-2025,” Paris: OECD Publishing, 2016.

J. R. Hogarth, C. Haywood, and S. Whitley, “Low-carbon development in sub-Saharan Africa: 20 cross-sector transitions,” Overseas Dev. Institute, London, 2015.

M. Hassouna et al., “Measuring emissions from livestock farming: greenhouse gases, ammonia and nitrogen oxides.” 2016.

C. K. Bosire et al., “Adaptation opportunities for smallholder dairy farmers facing resource scarcity: Integrated livestock, water and land management,” Agric. Ecosyst. Environ., 2019, doi: 10.1016/j.agee.2019.106592.

S. Gizaw, M. Abera, M. Muluye, H. Dirk, B. Gebremedhin, and A. Tegegne, “Smallholder dairy farming systems in the highlands of Ethiopia: System-specific constraints and intervention options Smallholder dairy farming systems in the highlands of Ethiopia: System-specific constraints and intervention options,” LIVES Work. Pap. 23. Nairobi, Kenya Int. Livest. Res. Inst. (ILRI)., 2016.

A. P. Mbilu, “Smallholder dairy farmers’ technical efficiency in milk production: case of EPINAV dairy project in Njombe District, Tanzania.” Sokoine University of Agriculture, 2015.

A. R. Chawala, G. Banos, A. Peters, and M. G. G. Chagunda, “Farmer-preferred traits in smallholder dairy farming systems in Tanzania,” Trop. Anim. Health Prod., 2019, doi: 10.1007/s11250-018-01796-9.

J. M. K. Ojango, R. Mrode, A. M. Okeyo, J. E. O. Rege, K. Emerge-Africa, and M. G. G. Chagunda, “Improving smallholder dairy farming in Africa,” in Achieving sustainable production of milk Volume 2, Burleigh Dodds Science Publishing, 2017, pp. 371–396.

Mutimura M, “On-farm evaluation of improved Brachiaria grasses in low rainfall and aluminium toxicity prone areas of Rwanda,” Int. J. Biodivers. Conserv., 2012, doi: 10.5897/ijbc10.121.

B. L. Bumb, “An action plan for developing sustainable agricultural input supply systems in Malawi.,” An action plan Dev. Sustain. Agric. input supply Syst. Malawi., 2002.

N. T. Ngongoni, C. Mapiye, M. Mwale, and B. Mupeta, “Factors affecting milk production in the smallholder dairy sector of Zimbabwe,” Livest. Res. Rural Dev., 2006.

N. Johnson, J. Njuki, E. Waithanji, M. Nhambeto, M. Rogers, and E. H. Kruger, “The Gendered Impacts of Agricultural Asset Transfer Projects: Lessons from the Manica Smallholder Dairy Development Program,” Gend. Technol. Dev., 2015, doi: 10.1177/0971852415578041.

M. R. Mulford, “SMALLHOLDER MARKET PARTICIPATION AND WELFARE EFFECTS: EVIDENCE FROM THE KENYA DAIRY SECTOR,” 2013.

FAOSTAT, “FAO, http://faostat3.fao.org/,” 2018.

S. Bingi and F. Tondel, “Recent developments in the dairy sector in Eastern Africa: Towards a regional policy framework for value chain development,” ECDPM Brief. Note, 2015.

S. Moyo, “Family farming in sub-Saharan Africa: its contribution to agriculture, food security and rural development,” Working Paper, 2016.

D. Gollin, Smallholder agriculture in Africa: An overview and implications for policy. 2014.

G. K. Gitau et al., “Artificial or Natural Insemination: the Demand for Breeding Services by Smallholders,” Livest. Prod. Sci., 2013, doi: 10.1016/j.livprodsci.2003.10.008.

M. N. Lukuyu, J. P. Gibson, D. B. Savage, E. J. O. Rao, N. Ndiwa, and A. J. Duncan, “Farmers’ perceptions of dairy cattle breeds, breeding and feeding strategies: a case of smallholder dairy farmers in Western Kenya,” East African Agric. For. J., vol. 83, no. 4, pp. 351–367, 2019.

IPCC, “IPCC Global Warming of 1.5°C Summary For Policymakers,” in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, 2018.

J. Wang and B. Chameides, Global warming’s increasingly visible impacts. Environmental Defense, 2005.

IPCC, Summary for Policymakers. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 oC above pre-industrial levels. 2018.

S. Sivaramanan, “Global Warming and Climate change , causes , impacts and mitigation,” ResearchGate, 2015, doi: 10.13140/RG.2.1.4889.7128.

C. C. IPCC, “Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge Univ. Press Cambridge, United Kingdom New York, NY, USA, 2014.

A. N. Mukasa, A. D. Woldemichael, A. O. Salami, and A. M. Simpasa, “Africa’s Agricultural Transformation: Identifying Priority Areas and Overcoming Challenges,” Africa Econ. Br., 2017.

N. D. Chauvin, F. Mulangu, and G. Porto, “Food Production and Consumption Trends in Sub-Saharan Africa: Prospects for the Transformation of the Agricultural

Sector,” Work. Pap. 2012-11, 2012, doi: 10.1016/j.foodpol.2013.10.006.

M. I. Tongwane and M. E. Moeletsi, “A review of greenhouse gas emissions from the agriculture sector in Africa,” Agricultural Systems. 2018, doi: 10.1016/j.agsy.2018.08.011.

FAO, Climate-Smart Agriculture Sourcebook. Food and Agriculture Organization of the United Nations. 2013.

B. T. Tezera and V. VHL, “Carbon Footprint of Milk at Smallholder Dairy Production in Zeway–Hawassa Milk Shed, Ethiopia.” Van Hall Larenstein, 2018.

D. G. Kim, A. D. Thomas, D. Pelster, T. S. Rosenstock, and A. Sanz-Cobena, “Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: Synthesis of available data and suggestions for further research,” Biogeosciences, 2016, doi: 10.5194/bg-13-4789-2016.

P. J. Gerber et al., Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. 2013.

OECD, Food, and A. O. of the United Nations, OECD-FAO Agricultural Outlook 2017-2026. 2017.

B. K. Paul et al., “Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs,” Agric. Syst., 2018, doi: 10.1016/j.agsy.2017.02.007.

RAB, “Girinka program: A success story,” Rwanda Agric. Board, Kigali, 2013.

P. J. Gerber et al., “Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review.,” Animal : an international journal of animal bioscience. 2013, doi: 10.1017/S1751731113000876.

H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, M. Rosales, and C. de Haan, “Livestock’s long shadow: Environmental issues and options,” Renew. Resour. J., 2006.

D. Popa, R. Popa, L. Vidu, and C. Nicolae, “Emission of Methane from Enteric Fermentation of Cattle and Buffaloes in Romania between 1989-2014,” Agric. Agric. Sci. Procedia, 2016, doi: 10.1016/j.aaspro.2016.09.066.

J. R. Knapp, G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico, “Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions,” Journal of Dairy Science. 2014, doi: 10.3168/jds.2013-7234.

M. Brander, “Greenhouse Gases , CO2 , CO2e , and Carbon : What Do All These Terms Mean?,” Ecometrica, 2012.

L. G. R. Pereira et al., “Enteric methane mitigation strategies in ruminants: A review,” Rev. Colomb. Ciencias Pecu., 2015, doi: 10.17533/udea.rccp.v28n2a02.

H. Tian et al., “Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes,” Ecosyst. Heal. Sustain., 2015, doi: 10.1890/EHS14-0015.1.

T. Kristensen, L. Mogensen, M. T. Knudsen, and J. E. Hermansen, “Effect of production system and farming strategy on greenhouse gas emissions from commercial dairy farms in a life cycle approach,” Livest. Sci., 2011, doi: 10.1016/j.livsci.2011.03.002.

FAO & New Zealand Agricultural Greenhouse Gas Research Centre, “Reducing enteric methane for improving food security and livelihoods - Project Highlights 2015-2017,” Rome, 2019.

FAOSTAT, “FAOSTAT database. Food and Agriculture Organization of the United Nations. Available at: http:/ /faostat.fao.org/.,” 2013.

M. Herrero, P. K. Thornton, R. Kruska, and R. S. Reid, “Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030,” Agric. Ecosyst. Environ., 2008, doi: 10.1016/j.agee.2008.01.017.

C. J. L. du Toit, H. H. Meissner, and W. A. van Niekerk, “Direct methane and nitrous oxide emissions of South African dairy and beef cattle,” South African J. Anim. Sci., 2013, doi: 10.4314/sajas.v43i3.7.

L. Mapfumo, S. M. Grobler, J. F. Mupangwa, M. M. Scholtz, and V. Muchenje, “Enteric methane output from selected herds of beef cattle raised under extensive arid rangelands,” Pastoralism, 2018, doi: 10.1186/s13570-018-0121-9.

FAO & New Zealand Agricultural Greenhouse Gas Research Centre, “Options for low emission development in the Kenya dairy sector - reducing enteric methane for food security and livelihoods,” Rome, 2017. [Online]. Available: http://www.fao.org/3/a-i7669e.pdf.

J. B. Kouazounde et al., “Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology,” Animal, 2015, doi: 10.1017/S1751731114002626.

O. A. Ndambi, D. E. Pelster, J. O. Owino, F. de Buisonjé, and T. Vellinga, “Manure Management Practices and Policies in Sub-Saharan Africa: Implications on Manure Quality as a Fertilizer,” Front. Sustain. Food Syst., 2019, doi: 10.3389/fsufs.2019.00029.

P. J. M. Snijders et al., “Cattle manure management in East Africa: Review of manure quality and nutrient losses and scenarios for cattle and manure management,” Wageningen UR Livestock Research, 2009.

M. Herrero et al., “Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems,” Proc. Natl. Acad. Sci. U. S. A., 2013, doi: 10.1073/pnas.1308149110.

V. Sejian et al., “Livestock as Sources of Greenhouse Gases and Its Significance to Climate Change,” in Greenhouse Gases, 2016.

J. J. Owen and W. L. Silver, “Greenhouse gas emissions from dairy manure management: A review of field-based studies,” Global Change Biology. 2015, doi: 10.1111/gcb.12687.

H. A. Aguirre-Villegas and R. A. Larson, “Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools,” J. Clean. Prod., 2017, doi: 10.1016/j.jclepro.2016.12.133.

R. K. Hubbard, R. R. Lowrance, and R. J. Wright, “Management of dairy cattle manure,” Agric. Uses Munic. Anim. Ind. Byprod, pp. 91–102, 1998.

W. J. Corré, “Agricultural land use and emissions of CH4 and N2O in Europe,” Plant Research International, 2002.

K. Teenstra, E., Vellinga, T., Aektasaeng, A., Amatayakul, W., Ndambi, O.A., Pelster, D.E., Germer, L., Jenet, A., Opio, C. and Andeweg, “Global Assessment of Manure Management Policies and Practices,” Wageningen Livest. Res. Rep., 2014, doi: 10.6084/m9.figshare.8251232.

G. Grossi, P. Goglio, A. Vitali, and A. G. Williams, “Livestock and climate change: Impact of livestock on climate and mitigation strategies,” Anim. Front., 2019, doi: 10.1093/af/vfy034.

G. Zeeman, “Methane production/emission in storages for animal manure,” Fertil. Res., vol. 37, no. 3, pp. 207–211, 1994.

P. Hoeksma, J. M. Losada, and R. W. Melse, “Monitoring methane and nitrous oxide reduction by manure treatment,” Wageningen UR Livestock Research, 2012.

H. Udo, V. Weiler, O. Modupeore, T. Viets, and S. Oosting, “Intensification to reduce the carbon footprint of smallholder milk production: Fact or fiction?,” Outlook Agric., 2016, doi: 10.5367/oa.2016.0229.

P. Tittonell, M. C. Rufino, B. H. Janssen, and K. E. Giller, “Carbon and nutrient losses during manure storage under traditional and improved practices in smallholder crop-livestock systems-evidence from Kenya,” Plant Soil, 2010, doi: 10.1007/s11104-009-0107-x.

C. A. Rotz, “Modeling greenhouse gas emissions from dairy farms,” J. Dairy Sci., 2018, doi: 10.3168/jds.2017-13272.

D.-G. Kim, A. D. Thomas, D. Pelster, T. S. Rosenstock, and A. Sanz-Cobena, “Reviews and syntheses: Greenhouse gas emissions in natural and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further studies,” Biogeosciences Discuss., 2015, doi: 10.5194/bgd-12-16479-2015.

S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, “IPCC guidelines for national greenhouse gas inventories,” 2006.

N. R. Ubisi, P. L. Mafongoya, U. Kolanisi, and O. Jiri, “Smallholder farmer’s perceived effects of climate change on crop production and household livelihoods in rural Limpopo province, South Africa,” Chang. Adapt. Socio-Ecological Syst., 2017, doi: 10.1515/cass-2017-0003.

J. Wu et al., “What affects Chinese residents’ perceptions of climate change?,” Sustain., 2018, doi: 10.3390/su10124712.

L. Roco, A. Engler, B. E. Bravo-Ureta, and R. Jara-Rojas, “Farmers’ perception of climate change in mediterranean Chile,” Reg. Environ. Chang., 2015, doi: 10.1007/s10113-014-0669-x.

J. N. Ng’ombe, M. C. Tembo, and B. Masasi, “‘Are they aware, and why?’ Bayesian analysis of predictors of smallholder farmers’ awareness of climate change and its risks to agriculture,” Agronomy, 2020, doi: 10.3390/agronomy10030376.

P. K. Mogomotsi, A. Sekelemani, and G. E. J. Mogomotsi, “Climate change adaptation strategies of small-scale farmers in Ngamiland East, Botswana,” Clim. Change, 2020, doi: 10.1007/s10584-019-02645-w.

A. Belay, J. W. Recha, T. Woldeamanuel, and J. F. Morton, “Smallholder farmers’ adaptation to climate change and determinants of their adaptation decisions in the Central Rift Valley of Ethiopia,” Agric. Food Secur., 2017, doi: 10.1186/s40066-017-0100-1.

P. Asrat and B. Simane, “Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia,” Ecol. Process., 2018, doi: 10.1186/s13717-018-0118-8.

B. Legesse, Y. Ayele, and W. Bewket, “Smallholder Farmers’ Perceptions and Adaptation to Climate Variability and Climate Change in Doba District, West Hararghe, Ethiopia,” Asian J. Empir. Res., 2012.

H. Hundera, S. Mpandeli, and A. Bantider, “Smallholder farmers’ awareness and perceptions of climate change in Adama district, central rift valley of Ethiopia,” Weather Clim. Extrem., 2019, doi: 10.1016/j.wace.2019.100230.

J. A. Tambo and T. Abdoulaye, “Smallholder farmers’ perceptions of and adaptations to climate change in the Nigerian savanna,” Reg. Environ. Chang., 2013, doi: 10.1007/s10113-012-0351-0.

A. Ayanlade, M. Radeny, and J. F. Morton, “Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria,” Weather Clim. Extrem., 2017, doi: 10.1016/j.wace.2016.12.001.

A. U. Ofuoku, “RURAL FARMERS’ PERCEPTION OF CLIMATE CHANGE IN CENTRAL AGRICULTURAL ZONE OF DELTA STATE, NIGERIA,” Indones. J. Agric. Sci., 2011, doi: 10.21082/ijas.v12n2.2011.p63-69.

Z. A. Elum, D. M. Modise, and A. Marr, “Farmer’s perception of climate change and responsive strategies in three selected provinces of South Africa,” Clim. Risk Manag., 2017, doi: 10.1016/j.crm.2016.11.001.

M. T. Rapholo and L. Diko Makia, “Are smallholder farmers’ perceptions of climate variability supported by climatological evidence? Case study of a semi-arid region in South Africa,” Int. J. Clim. Chang. Strateg. Manag., 2020, doi: 10.1108/IJCCSM-01-2020-0007.

H. E. Jones, C. C. Warkup, A. Williams, and E. Audsley, “The effect of genetic improvement on emissions from livestock systems,” 59th Annu. Meet. Eur. Assoc. Anim. Prod., 2008.

J. J. Hyland, D. L. Jones, K. A. Parkhill, A. P. Barnes, and A. P. Williams, “Farmers’ perceptions of climate change: identifying types,” Agric. Human Values, 2016, doi: 10.1007/s10460-015-9608-9.

E. M. Rogers, Diffusion of innovations. Simon and Schuster, 2010.

M. T. Niles, M. Brown, and R. Dynes, “Farmer’s intended and actual adoption of climate change mitigation and adaptation strategies,” Clim. Change, 2016, doi: 10.1007/s10584-015-1558-0.

K. B. Waldman et al., “Cognitive biases about climate variability in smallholder farming systems in Zambia,” Weather. Clim. Soc., 2019, doi: 10.1175/WCAS-D-18-0050.1.

P. H. Nyanga, F. H. Johnsen, J. B. Aune, and T. H. Kalinda, “Smallholder Farmers’ Perceptions of Climate Change and Conservation Agriculture: Evidence from Zambia,” J. Sustain. Dev., 2011, doi: 10.5539/jsd.v4n4p73.

B. P. Mulenga, A. Wineman, and N. J. Sitko, “Climate Trends and Farmers’ Perceptions of Climate Change in Zambia,” Environ. Manage., 2017, doi: 10.1007/s00267-016-0780-5.

I. Darnhofer, “Strategies of family farms to strengthen their resilience,” Environ. Policy Gov., 2010, doi: 10.1002/eet.547.

K. Jantke, M. J. Hartmann, L. Rasche, B. Blanz, and U. A. Schneider, “Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers,” Land, vol. 9, no. 5, p. 130, 2020.

L. T. Habtemariam, M. Gandorfer, G. A. Kassa, and A. Heissenhuber, “Factors Influencing Smallholder Farmers’ Climate Change Perceptions: A Study from Farmers in Ethiopia,” Environ. Manage., 2016, doi: 10.1007/s00267-016-0708-0.

C. R. Foguesatto and J. A. D. Machado, “What shapes farmers’ perception of climate change? A case study of southern Brazil,” Environ. Dev. Sustain., 2020, doi: 10.1007/s10668-020-00634-z.

D. Pelster et al., “Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes,” Biogeosciences, 2017, doi: 10.5194/bg-14-187-2017.

G. Nakweya, “Carbon projects for smallholder farmers can ‘reduce poverty,’” 2013. https://www.scidev.net/sub-saharan-africa/policy/news/carbon-projects-for-smallholder-farmers-can-reduce-poverty.html?__cf_chl_jschl_tk__=996454ad2e97818bfb217004087eb793f48cf605-1588876060-0-ASZwEzEuFsv54MoCB3U6FVdNm9Uy7ewsTHOqOowbcgVtu0T_60v3Z89A8ZlXaiA (accessed May 07, 2020).

S. Burbi, R. N. Baines, and J. S. Conway, “Small-scale farmers and climate change–Opportunities and barriers to community engagement,” Asp Appl Biol, vol. 121, pp. 213–218, 2013.

H. M. J. Udo et al., “Impact of intensification of different types of livestock production in smallholder crop-livestock systems,” Livest. Sci., 2011, doi: 10.1016/j.livsci.2011.03.020.

E. Owen, T. Smith, and H. Makkar, “Successes and failures with animal nutrition practices and technologies in developing countries: A synthesis of an FAO e-conference,” 2012, doi: 10.1016/j.anifeedsci.2012.03.010.

H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, “IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Energy,” 2006.

J. Rolfe, “Economics of reducing methane emissions from beef cattle in extensive grazing systems in Queensland,” Rangel. J., 2010, doi: 10.1071/RJ09026.

R. J. Eckard, C. Grainger, and C. A. M. de Klein, “Options for the abatement of methane and nitrous oxide from ruminant production: A review,” Livest. Sci., 2010, doi: 10.1016/j.livsci.2010.02.010.

P. Brandt, M. Herold, and M. C. Rufino, “The contribution of sectoral climate change mitigation options to national targets: A quantitative assessment of dairy production in Kenya,” Environ. Res. Lett., 2018, doi: 10.1088/1748-9326/aaac84.

FAO & New Zealand Agricultural Greenhouse Gas Research Centre, “Options for low emission development in the Tanzania dairy sector - reducing enteric methane for food security and livelihoods,” Rome, 2019.

C. F. Matos, J. L. Paes, É. F. M. Pinheiro, and D. V. B. De Campos, “Biogas production from dairy cattle manure, under organic and conventional production systems,” Eng. Agric., 2017, doi: 10.1590/1809-4430-eng.agric.v37n6p1081-1090/2017.

S. Zareei, “Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran,” Renew. Energy, 2018, doi: 10.1016/j.renene.2017.11.026.

I. M. Nasir, T. I. Mohd Ghazi, and R. Omar, “Anaerobic digestion technology in livestock manure treatment for biogas production: A review,” Engineering in Life Sciences. 2012, doi: 10.1002/elsc.201100150.

R. P. Kataria, “Use of feed additives for reducing greenhouse gas emissions from dairy farms,” Microbiol. Res. (Pavia)., vol. 6, no. 1, 2015.

D. Boadi, C. Benchaar, J. Chiquette, and D. Massé, “Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review,” Canadian Journal of Animal Science. 2004, doi: 10.4141/A03-109.

D. E. Johnson, G. W. Ward, and J. J. Ramsey, “Livestock methane: current emissions and mitigation potential,” Nutr. Manag. food Anim. to Enhanc. Prot. Environ., pp. 219–234, 1996.

R. A. Leng, T. R. Preston, and S. Inthapanya, “Biochar reduces enteric methane and improves growth and feed conversion in local ‘Yellow’ cattle fed cassava root chips and fresh cassava foliage,” Livest. Res. Rural Dev., 2012.

C. Kammann et al., “Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs,” Journal of Environmental Engineering and Landscape Management. 2017, doi: 10.3846/16486897.2017.1319375.

O. Adedeji, “Transforming cassava wastes to wealth as a climate-change mitigation strategy in Nigeria,” 2019.

J. R. Knapp, G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico, “Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions,” Journal of Dairy Science. 2014, doi: 10.3168/jds.2013-7234.

S. M. McGinn, K. A. Beauchemin, T. Coates, and D. Colombatto, “Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid,” J. Anim. Sci., vol. 82, no. 11, pp. 3346–3356, 2004.

K. A. Beauchemin and S. M. McGinn, “Methane emissions from feedlot cattle fed barley or corn diets,” J. Anim. Sci., 2005, doi: 10.2527/2005.833653x.

H. Guan, K. M. Wittenberg, K. H. Ominski, and D. O. Krause, “Efficacy of ionophores in cattle diets for mitigation of enteric methane,” J. Anim. Sci., 2006, doi: 10.2527/jas.2005-652.

S. L. Woodward, G. C. Waghorn, M. J. Ulyatt, and K. R. Lassey, “Early indications that feeding Lotus will reduce methane emissions from ruminants,” Proc. New Zeal. Soc. Anim. Prod., 2001.

G. C. Waghorn, M. H. Tavendale, and D. R. Woodfield, “Methanogenesis from forages fed to sheep,” Proc. New Zeal. Grassl. Assoc., 2002, doi: 10.33584/jnzg.2002.64.2462.

E. K. Stewart, K. A. Beauchemin, X. Dai, J. W. MacAdam, R. G. Christensen, and J. J. Villalba, “Effect of tannin-containing hays on enteric methane emissions and nitrogen partitioning in beef cattle,” J. Anim. Sci., 2019, doi: 10.1093/jas/skz206.

E. P. Mohankumar Sajeev, W. Winiwarter, and B. Amon, “Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions,” J. Environ. Qual., 2018, doi: 10.2134/jeq2017.05.0199.

F. Battini, A. Agostini, A. K. Boulamanti, J. Giuntoli, and S. Amaducci, “Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley,” Sci. Total Environ., 2014, doi: 10.1016/j.scitotenv.2014.02.038.

G. C. Waghorn, S. L. Woodward, M. Tavendale, and D. A. Clark, “Inconsistencies in rumen methane production—effects of forage composition and animal genotype,” in International Congress Series, 2006, vol. 1293, pp. 115–118.

I. C. De Faria Maciel et al., “Could the breed composition improve performance and change the enteric methane emissions from beef cattle in a tropical intensive production system?,” PLoS One, 2019, doi: 10.1371/journal.pone.0220247.

B. Henry and R. Eckard, “Greenhouse gas emissions in livestock production systems,” 2009.




DOI: http://dx.doi.org/10.52155/ijpsat.v25.1.2737

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Janvier HAKUZIMANA, Divin Jean Paul Munyambonera, Jean de Dieu Habimana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.