Antimicrobial and Antioxidant Potential of Some Agarwood Plant Extracts (Aquilaria malaccensis Lamk.) Against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213 and Candida albicans (C.P Robin) Berkhout 1923

Nurmiati Nurmiati, Periadnadi Periadnadi, Zakiyyatul Fithri Rosadi

Abstract


Research on the Antimicrobial and Antioxidant Potential of some Agarwood Plant Extracts (Aquilaria malaccensis Lamk) against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213 and Candida albicans (C.P Robin) Berkhout 1923 has been carried out at the Microbiology Laboratory of Andalas University in April - July 2023. This study aims to determine the antimicrobial and antioxidant activity of some Agarwood Plant Extracts. The method used in this research is the experimental method of nested pattern. The results showed that each extract gave a significantly different effect on S. aureus with the largest inhibition zone in the leaf extract of (9.79 mm) and E. coli of (7.37 mm), but did not give a significantly different effect on C. albicans, because no inhibition zone was found. The Minimum Inhibitory Concentration (MIC) of the leaf extract against S. aureus was 6.25% with a Minimum Bactericidal Concentration (MBC) of 50% and the Minimum Inhibitory Concentration (MIC) value of E. coli was 3.125% with a Minimum Bactericidal Concentration (MBC) of 12.5%. The percentage of inhibition of agarwood leaf extract against the growth of E. coli and S. aureus was (30.18%) and (43.84%) of the positive control chloramphenicol (0.1 mg/ml). While the percentage of inhibition of agarwood leaf extract against the growth of C. albicans was (28.70%) from the positive control of fluconazole (0.1 mg/ml). The highest antioxidant activity was found in the leaf extract with an IC50 value of 50.47 μg/ml. The highest polyphenol content was found in the leaf extract at 34.14 mgGAE/ml.

 


Keywords


Antimicrobial, Antioxidant, Agarwood, Leaf, Polyphenols.

Full Text:

PDF

References


Hsu, V. P., Lukacs, S. L., Handzel, T., Hayslett, J., Harper, S., Hales, T., Semenova, V. A., Romero-Steiner, S., Elie, C., Quinn, C. P., Khabbaz, R., Khan, A. S., Martin, G., Eisold, J., Schuchat, A., & Hajjeh, R. A. (2002, October). The Public Health Response and Epidemiologic Investigation Related to the Opening of aBacillus anthracis–Containing Envelope, Capitol Hill, Washington, D.C. Emerging Infectious Diseases, 8(10), 1039–1043. https://doi.org/10.3201/eid0810.020332

Kongkham, B., Prabakaran, D., & Puttaswamy, H. (2020). Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia, 147, 104762. https://doi.org/10.1016/j.fitote.2020.104762

Ahmed, M. M., Emad Khadum, H., & Saied Jassam, H. M. (2023). Medicinal Herbs as Novel Therapies against Antibiotic-Resistant Bacteria. Research Journal of Pharmacy and Technology, 62–66. https://doi.org/10.52711/0974-360x.2023.00011

Liu, Y. Y., Wei, J. H., Gao, Z. H., Zhang, Z., & Lyu, J. C. (2017). A Review of Quality Assessment and Grading for Agarwood. Chinese Herbal Medicines, 9(1), 22–30. https://doi.org/10.1016/s1674-6384(17)60072-8

Ridwanti Batubara, SURJANTO, T. ISMANELLY HANUM, ARBI HANDIKA, & ODING AFFANDI. (2020). The screening of phytochemical and antioxidant activity of agarwood leaves (Aquilaria malaccensis) from two sites in North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(4). https://doi.org/10.13057/biodiv/d210440

Jouki, M., & Khazaei, N. Antibacterial activity of essential oil of north west Algerian Eucalyptus camaldulensis against Escherichia coli and Staphylococcus aureus. (2014). Journal of Coastal Life Medicine. https://doi.org/10.12980/jclm.2.201414b57

LU, J. J. (2009). Antioxidant Activity and Structure-activity Relationship of the Flavones from the Leaves of Aquilaria sinensis Chinese Journal of Natural Medicines, 6(6), 456–460. https://doi.org/10.3724/sp.j.1009.2008.00456

Alwi, H., Ali, S. A., Hamid, K. H. K., Shamsudin, M. Z., Radzi, N. C., Md Zaki, N. A., & Muhd, M. N. (2017). Drying effects of vacuum far-infrared on Aquilaria malaccensis leaves. Journal of Physics: Conference Series, 885, 012017. https://doi.org/10.1088/1742-6596/885/1/012017

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Morello, J.A., P.A. Granato & H.E. Mizer. Laboratory Manual & Workbook in Microbiology. 7 th Edition. The McGraw-Hill Companie. 2003. New York.

Molyneux, P. The Use of Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin Journal of Science & Technology. 2004. 26, 211-219.

Jeong, S. M., Kim, S. Y., Kim, D. R., Jo, S. C., Nam, K. C., Ahn, D. U., & Lee, S. C. (2004, April 30). Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels. Journal of Agricultural and Food Chemistry, 52(11), 3389–3393. https://doi.org/10.1021/jf049899k

Gurusamy, K. S., Koti, R., Toon, C. D., Wilson, P., & Davidson, B. R. (2013). Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in surgical wounds. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd009726.pub2

Tian, J., Lai, D., & Zhou, L. (2017). Secondary Metabolites from Acremonium Fungi: Diverse Structures and Bioactivities. Mini-Reviews in Medicinal Chemistry, 17(7), 603–632. https://doi.org/10.2174/1389557516666160914194134

Verma, A. (2012). Phytochemical Examination and in Vitro Free Radicl Scavinging Activity of Rhizome of Acorus Calamus Linn. Family Araceae. International Journal of Scientific Research, 3(1), 54–55. https://doi.org/10.15373/22778179/jan2014/18

Meredith, T. C., Aggarwal, P., Mamat, U., Lindner, B., & Woodard, R. W. (2006). Redefining the Requisite Lipopolysaccharide Structure in Escherichia coli. ACS Chemical Biology, 1(1), 33–42. https://doi.org/10.1021/cb0500015

Zainurin, N., Hashim, Y. Y., Mohamed Azmin, N., & Al-Khatib, M. (2020). Understanding the effects of different parameters of Soxhlet extraction on bioactive compounds from Aquilaria malaccensis leaf through GCMS-based profiling. Food Research, 4(S1), 63–73. https://doi.org/10.26656/fr.2017.4(s1).s09.

Loo, A., Jain, K., & Darah, I. (2007). Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata. Food Chemistry, 104(1), 300–307. https://doi.org/10.1016/j.foodchem.2006.11.048

Weng, A., Thakur, Melzig, & Fuchs. (2011). Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Botanics: Targets and Therapy, 19. https://doi.org/10.2147/btat.s17261

.Ajayi, O., Awala, S., Olalekan, O., & Alabi, O. (2017). Evaluation of Antimicrobial Potency and Phytochemical Screening of Persea americana Leaf Extracts against Selected Bacterial and Fungal Isolates of Clinical Importance. Microbiology Research Journal International, 20(1), 1–11. https://doi.org/10.9734/mrji/2017/24508

Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M. L., De Tommasi, N., Izzo, V., & Dal Piaz, F. (2021). Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics, 13(5), 660. https://doi.org/10.3390/pharmaceutics13050660

MARKOM, M., HASAN, M., DAUD, W., SINGH, H., & JAHIM, J. (2007). Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Separation and Purification Technology, 52(3), 487–496. https://doi.org/10.1016/j.seppur.2006.06.003

van Dalen, R., Peschel, A., & van Sorge, N. M. (2020). Wall Teichoic Acid in Staphylococcus aureus Host Interaction. Trends in Microbiology, 28(10), 869. https://doi.org/10.1016/j.tim.2020.07.001

Koyu, H., Kazan, A., Ozturk, T. K., Yesil-Celiktas, O., & Haznedaroglu, M. Z. (2017). Optimizing subcritical water extraction of Morus nigra L. fruits for maximization of tyrosinase inhibitory activity. The Journal of Supercritical Fluids, 127, 15–22. https://doi.org/10.1016/j.supflu.2017.03.007

Ajayi, O., Awala, S., Olalekan, O., & Alabi, O. (2017). Evaluation of Antimicrobial Potency and Phytochemical Screening of Persea americana Leaf Extracts against Selected Bacterial and Fungal Isolates of Clinical Importance. Microbiology Research Journal International, 20(1), 1–11. https://doi.org/10.9734/mrji/2017/24508

Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M. L., De Tommasi, N., Izzo, V., & Dal Piaz, F. (2021). Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics, 13(5), 660. https://doi.org/10.3390/pharmaceutics13050660

Cannon, M., Harford, S., & Davies, J. (1990). A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives. Journal of Antimicrobial Chemotherapy, 26(3), 307–317. https://doi.org/10.1093/jac/26.3.307

Chwastowski, J., Wójcik, K., Kołoczek, H., Oszczęda, Z., Khachatryan, K., & Tomasik, P. (2023). Effect of water treatment with low-temperature and low-pressure glow plasma of low frequency on the growth of selected microorganisms. International Journal of Food Properties, 26(1), 502–510. https://doi.org/10.1080/10942912.2023.2169708

Zervos, M., & Meunier, F. (1993). Fluconazole (Diflucan®): a review. International Journal of Antimicrobial Agents, 3(3), 147–170. https://doi.org/10.1016/0924-8579(93)90009-t

Chikezie, I. O. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. African Journal of Microbiology Research, 11(23), 977–980. https://doi.org/10.5897/ajmr2017.8545

Billings, N., & Ribbeck, K. (2014). Minimal Bactericidal Concentration for Biofilms (MBC-B). BIO-PROTOCOL, 4(9). https://doi.org/10.21769/bioprotoc.1115

Leyte-Lugo, M., Britton, E. R., Foil, D. H., Brown, A. R., Todd, D. A., Rivera-Chávez, J., Oberlies, N. H., & Cech, N. B. (2017). Secondary metabolites from the leaves of the medicinal plant goldenseal ( Hydrastis canadensis ). Phytochemistry Letters, 20, 54–60. https://doi.org/10.1016/j.phytol.2017.03.012

Budi Santoso, Neni Anggraini, Kiki Yuliati, & Din Pangawikan. (2022). Phenol compound content and antibacterial activity of gaharu leaf extract products (Aquilaria malaccensis). Bioscience Journal, 38, e37009. https://doi.org/10.14393/bj-v38n0a2022-54813

Kim Ngan, T. T., Thu Thuy, D. T., Tuyen, T. T., Inh, C. T., Bich, H. T., Long, P. Q., Chien, N. Q., Kieu Linh, H. T., Yen Trung, L. N., Tung, N. Q., Nguyen, D. C., Bach, L. G., & Toan, T. Q. (2019). Chemical Components of Agarwood (Aquilaria crassna)Essential Oils Grown in Various Regions of Asia. Asian Journal of Chemistry, 32(1), 36–40. https://doi.org/10.14233/ajchem.2020.22177

de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021, February). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535

Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/c4ra13315c

Shahidi, F., & Zhong, Y. (2015, October). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047




DOI: http://dx.doi.org/10.52155/ijpsat.v43.2.6113

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nurmiati Nurmiati, Periadnadi Periadnadi, Zakiyyatul Fithri Rosadi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.