Management of Multiple Sclerosis: Clinical Review

Maged Naser, Mohamed M. Nasr, Lamia H. Shehata

Abstract


Multiple sclerosis (MS) is an immune system demyelinating and neurodegenerative disease of the central nervous system, and the main source of non-traumatic neurological disability in young adults. Successful management requires a complex way to deal with control acute attacks, manage progressive declining, and remediate bothersome or handicapping side effects related with this disease. Striking advances in treatment of all types of MS, and particularly for relapsing disease, have well changed the long-term outlook for some patients. There likewise has been a calculated change in figuring out the immune pathology of MS, away from a simply T-cell interceded model to acknowledgment that B cells play a vital part in pathogenesis. The rise of higher-efficacy drugs requiring less frequent administration have made these favoured choices with regards to tolerability and adherence. Numerous specialists currently suggest utilization of these as first-line treatment for some patients with early disease, before long-lasting handicap is evident.


Keywords


Multiple Sclerosis, B cell Therapy, Treatment of Multiple Sclerosis.

Full Text:

PDF

References


- Kasper, Dennis, et al. Harrison's principles of internal medicine, 19e. Vol. 1. No. 2. New York, NY, USA: McGraw-Hill, 2015.‏

- Browne, Paul, et al. "Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity." Neurology 83.11 (2014): 1022-1024.‏

- Lublin, Fred D., et al. "Defining the clinical course of multiple sclerosis: the 2013 revisions." Neurology 83.3 (2014): 278-286.‏

- Feigin, Valery L., et al. "Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016." The Lancet Neurology 18.5 (2019): 459-480.‏

- Kamm, Christian P., Bernard M. Uitdehaag, and Chris H. Polman. "Multiple sclerosis: current knowledge and future outlook." European neurology 72.3-4 (2014): 132-141.‏

- Confavreux, Christian, and Sandra Vukusic. "Natural history of multiple sclerosis: a unifying concept." Brain 129.3 (2006): 606-616.‏

- Wallin, Mitchell T., et al. "The prevalence of MS in the United States: a population-based estimate using health claims data." Neurology 92.10 (2019): e1029-e1040.‏

- Cree, B., J. A. Hollenbach, and R. Bove. "a. C., et al. 2019. Silent Progression in Disease Activity-Free Relapsing Multiple Sclerosis." Ann Neurol.‏

- Kappos, Ludwig, et al. "Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study." Multiple Sclerosis Journal 24.7 (2018): 963-973.‏

-Hauser, Stephen L., and Bruce AC Cree. "Treatment of multiple sclerosis: a review." The American journal of medicine133.12 (2020): 1380-1390.

-Thompson, Alan J., et al. "Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria." The Lancet Neurology 17.2 (2018): 162-173.‏

-Filippi, Massimo, et al. "MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines." The Lancet Neurology 15.3 (2016): 292-303.

‏[13]-Hauser, Stephen L., et al. "Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis." New England Journal of Medicine 376.3 (2017): 221-234.‏

-Montalban, Xavier, et al. "Ocrelizumab versus placebo in primary progressive multiple sclerosis." New England Journal of Medicine 376.3 (2017): 209-220.‏

-Hauser, Stephen L., et al. "Ofatumumab versus teriflunomide in multiple sclerosis." New England Journal of Medicine 383.6 (2020): 546-557.‏

- Polman, Chris H., et al. "A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis." New England Journal of Medicine 354.9 (2006): 899-910.‏

- Coles, Alasdair J., et al. "Alemtuzumab vs. interferon beta-1a in early multiple sclerosis." N Engl J Med 359.17 (2008): 1786-1801.‏

- Cohen, Jeffrey A., et al. "Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial." The Lancet 380.9856 (2012): 1819-1828.‏

- Cohen, Jeffrey A., et al. "Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial." The Lancet 380.9856 (2012): 1819-1828.‏

- Goodin, D. S., et al. "The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis [RETIRED]: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology." Neurology 61.10 (2003): 1332-1338.‏

- Montalban, Xavier, et al. "Ocrelizumab versus placebo in primary progressive multiple sclerosis." New England Journal of Medicine 376.3 (2017): 209-220.‏

- Kappos, Ludwig, et al. "A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis." New England Journal of Medicine 362.5 (2010): 387-401.‏

- Kappos, Ludwig, et al. "Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study." The Lancet 391.10127 (2018): 1263-1273.‏

- Comi, Giancarlo, et al. "Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicenter, randomised, minimum 12-month, phase 3 trial." The Lancet Neurology 18.11 (2019): 1009-1020.‏

- Cohen, Jeffrey A., et al. "Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicenter, randomised, 24-month, phase 3 trial." The Lancet Neurology 18.11 (2019): 1021-1033.‏

- Fox, Robert J., et al. "Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis." New England Journal of Medicine 367.12 (2012): 1087-1097.‏

- Gold, Ralf, et al. "Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis." New England Journal of Medicine 367.12 (2012): 1098-1107.‏

- Giovanni, Gavin, et al. "A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis." New England Journal of Medicine 362.5 (2010): 416-426.‏

- O'Connor, Paul, et al. "Randomized trial of oral teriflunomide for relapsing multiple sclerosis." New England Journal of Medicine 365.14 (2011): 1293-1303.‏ [31]-Giovannoni, Gavin, et al. "A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis." New England Journal of Medicine 362.5 (2010): 416-426.‏

- Kappos, Ludwig, et al. "Fingolimod in relapsing multiple sclerosis: an integrated analysis of safety findings." Multiple sclerosis and related disorders 3.4 (2014): 494-504.

- Ebers, George C. "Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis." The Lancet 352.9139 (1998): 1498-1504

- Jacobs, Lawrence D., et al. "Intramuscular interferon beta‐1a for disease progression in relapsing multiple sclerosis." Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 39.3 (1996): 285-294.‏

- Calabresi, Peter A., et al. "Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study." The Lancet Neurology 13.7 (2014): 657-665.

- IFNB Multiple Sclerosis Study Group. "Interferon beta‐1b is effective in relapsing‐remitting multiple sclerosis: I. Clinical results of a multicenter, randomized, double‐blind, placebo-controlled trial." Neurology 43.4 (1993): 655-655.‏

-Nakajima, Hideaki. "Guest editorial: Hematopoietic stem cells." International Journal of Hematology 106 (2017): 16-17.‏

-Blank, Norbert, et al. "Low‐dose cyclophosphamide effectively mobilizes peripheral blood stem cells in patients with autoimmune disease." European journal of haematology 97.1 (2016): 78-82.‏

-Salvino, Marco Aurélio, and Jefferson Ruiz. "Hematopoietic progenitor cell mobilization for autologous transplantation-a literature review." Revista Brasileira de Hematologia e Hemoterapia 38 (2016): 28-36.‏

-Hübel, Kai. "Mobilization and Collection of HSC." The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies (2019): 117-122.‏

-Sharrack, Basil, et al. "Autologous hematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE)." Bone marrow transplantation 55.2 (2020): 283-306.‏

-Mancardi, Gianluigi, et al. "Intense immunosuppression followed by autologous hematopoietic stem cell transplantation as a therapeutic strategy in aggressive forms of multiple sclerosis." Multiple Sclerosis Journal 24.3 (2018): 245-255.‏

-Muraro, Paolo A., et al. "Autologous hematopoietic stem cell transplantation for treatment of multiple sclerosis." Nature Reviews Neurology 13.7 (2017): 391-405.‏

-Burman, Joachim, et al. "Autologous hematopoietic stem cell transplantation for neurological diseases." Journal of Neurology, Neurosurgery & Psychiatry 89.2 (2018): 147-155.‏

-Sormani, Maria Pia, et al. "Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis." Neurology 88.22 (2017): 2115-2122.‏

-Boffa, Giacomo, et al. "Long-term clinical outcomes of hematopoietic stem cell transplantation in multiple sclerosis." Neurology 96.8 (2021): e1215-e1226.‏

-Sboha, W. "Vård vid Multipel Skleros och Parkinsons Sjukdo." Socialstyrelsen: Falun, Sweden (2016): 26-30.‏

Laureys, Guy, et al. "A Belgian consensus protocol for autologous hematopoietic stem cell transplantation in multiple sclerosis." Acta Neurologica Belgica 118 (2018): 161-168.‏

-Zephir, Helene, et al. "Indications and follow-up for autologous hematopoietic stem cell transplantation in multiple sclerosis: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) in association with the Francophone Society of Multiple Sclerosis." Bulletin du Cancer 106.1S (2018): S92-S101.‏

-Cohen, Jeffrey A., et al. "Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: position statement from the American Society for Blood and Marrow Transplantation." Biology of Blood and Marrow Transplantation 25.5 (2019): 845-854.‏

-Bowen, James D., et al. "Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results." Bone marrow transplantation 47.7 (2012): 946-951.‏

-Curro’, Daniela, et al. "Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: a MRI-based clinical study." Multiple Sclerosis Journal 21.11 (2015): 1423-1430.‏

-Mancardi, Giovanni L., et al. "Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial." Neurology 84.10 (2015): 981-988.‏

-Burman, Joachim, et al. "Autologous hematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience." Journal of Neurology, Neurosurgery & Psychiatry 85.10 (2014): 1116-1121.‏

-Atkins, Harold L., et al. "Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicenter single-group phase 2 trial." The Lancet 388.10044 (2016): 576-585.‏

-Nash, Richard A., et al. "High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS." Neurology 88.9 (2017): 842-852.‏

-Burt, Richard K., et al. "Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study." The Lancet Neurology 8.3 (2009): 244-253.‏

-Burt, Richard K., et al. "Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial." Jama 321.2 (2019): 165-174.‏

-Zhukovsky, Christina, et al. "Autologous hematopoietic stem cell transplantation compared with alemtuzumab for relapsing–remitting multiple sclerosis: an observational study." Journal of Neurology, Neurosurgery & Psychiatry 92.2 (2021): 189-194.‏

-Harris, Kristina M., et al. "Extensive intrathecal T cell renewal following hematopoietic transplantation for multiple sclerosis." JCI insight 5.2 (2020).‏

-Arruda, Lucas CM, et al. "Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation." Clinical Immunology 169 (2016): 47-57.‏

-Muraro, Paolo A., et al. "T cell repertoire following autologous stem cell transplantation for multiple sclerosis." The Journal of clinical investigation 124.3 (2014): 1168-1172.‏

-Abrahamsson, Sofia V., et al. "Non-myeloablative autologous hematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis." Brain 136.9 (2013): 2888-2903.‏

-Darlington, Peter J., et al. "Natural killer cells regulate Th17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis." Frontiers in immunology 9 (2018): 834.‏

-Darlington, Peter J., et al. "Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation." Annals of neurology 73.3 (2013): 341-354.‏

-Sousa, Alessandra de Paula A., et al. "Autologous hematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis." Clinical science 128.2 (2015): 111-120

- Larsson, Diane, et al. "Intrathecal immunoglobulins and neurofilament light after autologous hematopoietic stem cell transplantation for multiple sclerosis." Multiple Sclerosis Journal 26.11 (2020): 1351-1359.‏

- Bertolotto, Antonio, et al. "Autologous hematopoietic stem cell transplantation (AHSCT): standard of care for relapsing–remitting multiple sclerosis patients." Neurology and Therapy 9 (2020): 197-203.‏

- Hendrawan, Kevin, et al. "Tolerance regeneration by T regulatory cells in autologous hematopoietic stem cell transplantation for autoimmune diseases." Bone Marrow Transplantation 55.5 (2020): 857-866.‏

- Friedenstein, Alexander J., et al. "Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo." Transplantation 17.4 (1974): 331-340.‏

- Marigo, Ilaria, and Francesco Dazzi. "The immunomodulatory properties of mesenchymal stem cells." Seminars in immunopathology. Vol. 33. Springer-Verlag, 2011.‏

-Di Nicola, Massimo, et al. "Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli." Blood, The Journal of the American Society of Hematology 99.10 (2002): 3838-3843.‏

-Meisel, Roland, et al. "Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase–mediated tryptophan degradation." Blood 103.12 (2004): 4619-4621.‏

-Sato, Kazuya, et al. "Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells." Blood 109.1 (2007): 228-234.‏

-Batten, Puspa, et al. "Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves." Tissue engineering 12.8 (2006): 2263-2273.‏

-Aggarwal, Sudeepta, and Mark F. Pittenger. "Human mesenchymal stem cells modulate allogeneic immune cell responses." Blood 105.4 (2005): 1815-1822.‏

-Augello, Andrea, et al. "Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway." European journal of immunology 35.5 (2005): 1482-1490.‏

-Beyth, Shaul, et al. "Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness." Blood 105.5 (2005): 2214-2219.‏

-Prevosto, Claudia, et al. "Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction." haematologica 92.7 (2007): 881-888.‏

-Haniffa, Muzlifah A., et al. "Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells." The Journal of Immunology 179.3 (2007): 1595-1604.‏

-Zhou, Heping, et al. "Mesenchymal stem cells might be used to induce tolerance in heart transplantation." Medical hypotheses 70.4 (2008): 785-787.‏

-Rasmusson, Ida, et al. "Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes." Journal of Leucocyte Biology 82.4 (2007): 887-893.‏

-Sotiropoulou, Panagiota A., et al. "Interactions between human mesenchymal stem cells and natural killer cells." Stem cells 24.1 (2006): 74-85.‏

-Spaggiari, Grazia Maria, et al. "Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation." Blood 107.4 (2006): 1484-1490.‏

-Maccario, Rita, et al. "Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype." Haematologica 90.4 (2005): 516-525.‏

-Zappia, Emanuela, et al. "Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy." Blood 106.5 (2005): 1755-1761.‏

-DiGirolamo, Carla M., et al. "Propagation and senescence of human marrow stromal cells in culture: a simple colony‐forming assay identifies samples with the greatest potential to propagate and differentiate." British journal of haematology 107.2 (1999): 275-281.‏

-Sekiya, Ichiro, et al. "Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality." Stem cells 20.6 (2002): 530-541.‏

-Hagh, Majid Farshdousti, et al. "Feasibility of cell therapy in multiple sclerosis: a systematic review of 83 studies." International journal of hematology-oncology and stem cell research 7.1 (2013): 15.‏

-Llufriu, Sara, et al. "Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis." PloS one 9.12 (2014): e113936.‏

-Zhang, Jing, et al. "Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice." Journal of neuroscience research 84.3 (2006): 587-595.‏

-Bai, Lianhua, et al. "Human bone marrow‐derived mesenchymal stem cells induce Th2‐polarized immune response and promote endogenous repair in animal models of multiple sclerosis." Glia 57.11 (2009): 1192-1203.‏

-Wilkins, Alastair, et al. "Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro." Stem cell research 3.1 (2009): 63-70.‏

-Li, Dongjie, et al. "Human umbilical cord-derived mesenchymal stem cells differentiate into epidermal-like cells using a novel co-culture technique." Cytotechnology 66 (2014): 699-708.‏

-Kopen, Gene C., Darwin J. Prockop, and Donald G. Phinney. "Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains." Proceedings of the National Academy of Sciences 96.19 (1999): 10711-10716.‏

-Arvey, Aaron, et al. "Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells." Nature immunology 15.6 (2014): 580-587.‏

-Ohkura, Naganari, Yohko Kitagawa, and Shimon Sakaguchi. "Development and maintenance of regulatory T cells." Immunity 38.3 (2013): 414-423.‏

-Samstein, Robert M., et al. "Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification." Cell 151.1 (2012): 153-166.‏

-Liu, Weihong, et al. "CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells." The Journal of experimental medicine 203.7 (2006): 1701-1711.‏

-de Lafaille, Maria A. Curotto, and Juan J. Lafaille. "Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?." Immunity 30.5 (2009): 626-635.

-Josefowicz, Steven Z., et al. "Extrathymically generated regulatory T cells control mucosal TH2 inflammation." Nature 482.7385 (2012): 395-399.‏

-Mason, Gavin M., et al. "Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry." The Journal of Immunology 195.5 (2015): 2030-2037.‏

-Apostolou, Irina, et al. "Peripherally induced Treg: mode, stability, and role in specific tolerance." Journal of clinical immunology 28 (2008): 619-624.‏

-Sakaguchi, Shimon. "Regulatory T cells: key controllers of immunologic self-tolerance." Cell 101.5 (2000): 455-458.‏

-Ehrenstein, Michael R., et al. "Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy." The Journal of experimental medicine 200.3 (2004): 277-285.‏

-Lindley, Shelley, et al. "Defective suppressor function in CD4+ CD25+ T-cells from patients with type 1 diabetes." Diabetes 54.1 (2005): 92-99.‏

-Sugiyama, Hideaki, et al. "Dysfunctional blood and target tissue CD4+ CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation." The Journal of Immunology 174.1 (2005): 164-173.‏

-Balandina, Anna, et al. "Functional defect of regulatory CD4+ CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis." Blood 105.2 (2005): 735-741.‏

-Kriegel, Martin A., et al. "Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II." The Journal of experimental medicine 199.9 (2004): 1285-1291.‏

-Kohm, Adam P., et al. "Cutting edge: CD4+ CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis." The Journal of Immunology 169.9 (2002): 4712-4716.‏

-Tanaka, Hajime, et al. "Successful immunotherapy of autoimmune cholangitis by adoptive transfer of fork head box protein 3+ regulatory T cells." Clinical & Experimental Immunology 178.2 (2014): 253-261.‏

-Edinger, Matthias. "Regulatory T cells for the prevention of graft‐versus‐host disease: Professionals defeat amateurs." European journal of immunology 39.11 (2009): 2966-2968.‏

-Trenado, Aurélie, et al. "Ex vivo-expanded CD4+ CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells." The Journal of Immunology 176.2 (2006): 1266-1273.‏

-Xiao, Fang, et al. "Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice." PloS one 9.3 (2014): e90387.‏

-Sagoo, Pervinder, et al. "Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells." Science translational medicine 3.83 (2011): 83ra42-83ra42.‏

-Epstein, David J., Jeffrey Dunn, and Stan Deresinski. "Infectious complications of multiple sclerosis therapies: implications for screening, prophylaxis, and management." Open forum infectious diseases. Vol. 5. No. 8. US: Oxford University Press, 2018.‏

-Jonuleit, Helmut, et al. "Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells." The Journal of experimental medicine 196.2 (2002): 255-260.‏

-Thornton, Angela M., and Ethan M. Shevach. "Suppressor effector function of CD4+ CD25+ immunoregulatory T cells is antigen nonspecific." The Journal of Immunology 164.1 (2000): 183-190.‏

-MacDonald, K. N., J. M. Piret, and M. K. Levings. "Methods to manufacture regulatory T cells for cell therapy." Clinical & Experimental Immunology 197.1 (2019): 52-63.‏

-Seay, Howard R., et al. "Expansion of human Tregs from cryopreserved umbilical cord blood for GMP-compliant autologous adoptive cell transfer therapy." Molecular Therapy-Methods & Clinical Development 4 (2017): 178-191.‏

-Raffin, Caroline, Linda T. Vo, and Jeffrey A. Bluestone. "Treg cell-based therapies: challenges and perspectives." Nature Reviews Immunology 20.3 (2020): 158-172.‏

-Safinia, Niloufar, et al. "Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation." Oncotarget 7.7 (2016): 7563.‏

-Thomson, Angus W., Hēth R. Turnquist, and Giorgio Raimondi. "Immunoregulatory functions of mTOR inhibition." Nature Reviews Immunology 9.5 (2009): 324-337.‏

-Battaglia, Manuela, et al. "Rapamycin promotes expansion of functional CD4+ CD25+ FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients." The Journal of Immunology 177.12 (2006): 8338-8347.‏

-Mathew, James M., et al. "A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants." Scientific reports 8.1 (2018): 7428.‏

-Schiavinato, Josiane Lilian dos Santos, et al. "TGF-beta/atRA-induced Tregs express a selected set of microRNAs involved in the repression of transcripts related to Th17 differentiation." Scientific reports 7.1 (2017): 3627.‏

-Scottà, Cristiano, et al. "Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+ CD25+ FOXP3+ T regulatory cell subpopulations." Haematologica 98.8 (2013): 1291.‏

-Esensten, Jonathan H., et al. "Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier." Journal of Allergy and Clinical Immunology 142.6 (2018): 1710-1718.‏

-Chwojnicki, Kamil, et al. "Administration of CD4+ CD25 high CD127− FoxP3+ Regulatory T Cells for Relapsing-Remitting Multiple Sclerosis: A Phase 1 Study." BioDrugs 35 (2021): 47-60.‏

-Romano, Marco, et al. "Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity." Frontiers in immunology 10 (2019): 43.‏

-Marek-Trzonkowska, Natalia, et al. "Therapy of type 1 diabetes with CD4+ CD25highCD127-regulatory T cells prolongs survival of pancreatic islets—Results of one-year follow-up." Clinical immunology 153.1 (2014): 23-30.‏

-Morgan, Mary E., et al. "Effective treatment of collagen‐induced arthritis by adoptive transfer of CD25+ regulatory T cells." Arthritis & Rheumatism 52.7 (2005): 2212-2221.‏

-Mottet, Christian, Holm H. Uhlig, and Fiona Powrie. "Cutting edge: cure of colitis by CD4+ CD25+ regulatory T cells." The Journal of Immunology 170.8 (2003): 3939-3943.‏

-Brunstein, Claudio G., et al. "Adoptive Transfer of Umbilical Cord Blood-Derived Regulatory T Cells Increases Early Viral Reactivation." Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 19.8 (2013).‏

-Green, E. Allison, Yongwon Choi, and Richard A. Flavell. "Pancreatic lymph node-derived CD4+ CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals." Immunity 16.2 (2002): 183-191.‏

-Tang, Qizhi, et al. "In vitro–expanded antigen-specific regulatory T cells suppress autoimmune diabetes." The Journal of experimental medicine 199.11 (2004): 1455-1465.‏

-Tarbell, Kristin V., et al. "CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes." The Journal of experimental medicine 199.11 (2004): 1467-1477.‏

-Masteller, Emma L., et al. "Expansion of functional endogenous antigen-specific CD4+ CD25+ regulatory T cells from nonobese diabetic mice." The Journal of immunology 175.5 (2005): 3053-3059.‏

-Tarbell, Kristin V., et al. "Dendritic cell–expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice." The Journal of experimental medicine 204.1 (2007): 191-201.‏

-Ferreira, Leonardo MR, et al. "Next-generation regulatory T cell therapy." Nature reviews Drug discovery 18.10 (2019): 749-769.‏

-Mekala, Divya J., and Terrence L. Geiger. "Immunotherapy of autoimmune encephalomyelitis with redirected CD4+ CD25+ T lymphocytes." Blood 105.5 (2005): 2090-2092.‏

-Mekala, Divya J., Rajshekhar S. Alli, and Terrence L. Geiger. "IL-10-dependent infectious tolerance after the treatment of experimental allergic encephalomyelitis with redirected CD4+ CD25+ T lymphocytes." Proceedings of the National Academy of Sciences 102.33 (2005): 11817-11822.‏

-Kim, Yong Chan, et al. "Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells." Journal of autoimmunity 92 (2018): 77-86.‏

-Allan, Sarah E., et al. "Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3." Molecular Therapy 16.1 (2008): 194-202.‏

-Aarts‐Riemens, Tineke, et al. "Forced overexpression of either of the two-common human Foxp3 isoforms can induce regulatory T cells from CD4+ CD25–cells." European journal of immunology 38.5 (2008): 1381-1390.‏

-Fransson, Moa, et al. "CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery." Journal of neuroinflammation 9 (2012): 1-12.‏

-Pohl, Alessandra De Paula, et al. "Engineered regulatory T cells expressing myelin-specific chimeric antigen receptors suppress EAE progression." Cellular Immunology 358 (2020): 104222.‏

-Granucci, F., I. Zanoni, and P. Ricciardi-Castagnoli. "Central role of dendritic cells in the regulation and deregulation of immune responses." Cellular and Molecular Life Sciences 65 (2008): 1683-1697.‏

-Steinman, Ralph M. "Dendritic cells: versatile controllers of the immune system." Nature medicine 13.10 (2007): 1155-1159.‏

-Van Brussel, Ilse, Zwi N. Berneman, and Nathalie Cools. "Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system." Mediators of inflammation 2012 (2012).‏

-Banchereau, Jacques, et al. "Immunobiology of dendritic cells." Annual review of immunology 18.1 (2000): 767-811.‏

-Banchereau, Jacques, and Ralph M. Steinman. "Dendritic cells and the control of immunity." Nature 392.6673 (1998): 245-252.‏

-Boltjes, Arjan, and Femke Van Wijk. "Human dendritic cell functional specialization in steady-state and inflammation." Frontiers in immunology 5 (2014): 131.‏

-Moser, Muriel. "Dendritic cells in immunity and tolerance—do they display opposite functions?." Immunity 19.1 (2003): 5-8.‏

-Thewissen, Kristof, et al. "Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors." Multiple sclerosis journal 20.5 (2014): 548-557.‏

-Huang, Y. M., et al. "Altered phenotype and function of blood dendritic cells in multiple sclerosis are modulated by IFN-β and IL-10." Clinical & Experimental Immunology 124.2 (2001): 306-314.‏

-Karni, Arnon, et al. "Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response." The Journal of Immunology 177.6 (2006): 4196-4202.‏

-Huang, Yu-Min, et al. "Dendritic cells derived from patients with multiple sclerosis show high CD1a and low CD86 expression." Multiple Sclerosis Journal 7.2 (2001): 95-99.‏

-Vaknin-Dembinsky, Adi, Konstantin Balashov, and Howard L. Weiner. "IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production." The Journal of Immunology 176.12 (2006): 7768-7774.‏

-Vaknin-Dembinsky, Adi, et al. "Increased IL-23 secretion and altered chemokine production by dendritic cells upon CD46 activation in patients with multiple sclerosis." Journal of neuroimmunology 195.1-2 (2008): 140-145.‏

-Nuyts, Amber H., et al. "Dendritic cells in multiple sclerosis: key players in the immunopathogenesis, key players for new cellular immunotherapies?" Multiple Sclerosis Journal 19.8 (2013): 995-1002.‏

-Van Brussel, Ilse, et al. "Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can the unattainable dream turn into reality?" Autoimmunity reviews 13.2 (2014): 138-150.‏

-Tkachenko, Nataliya, et al. "Generation of dendritic cells from human peripheral blood monocytes-comparison of different culture media." Folia Histochemica et Cytobiologica 43.1 (2005): 25-30.‏

-Hackstein, Holger, and Angus W. Thomson. "Dendritic cells: emerging pharmacological targets of immunosuppressive drugs." Nature Reviews Immunology 4.1 (2004): 24-35.‏

-van Kooten, Cees, et al. "Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities." Transplantation 91.1 (2011): 2-7.‏

-Flórez-Grau, Georgina, et al. "Tolerogenic dendritic cells as a promising antigen-specific therapy in the treatment of multiple sclerosis and neuromyelitis optica from preclinical to clinical trials." Frontiers in immunology 9 (2018): 1169.‏

-Kalantari, Tahereh, et al. "Generation of immunogenic and tolerogenic clinical-grade dendritic cells." Immunologic research 51 (2011): 153-160.‏

-García-González, Paulina, et al. "A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines." Journal of translational medicine 11 (2013): 1-15.‏

-Naranjo-Gómez, Mar, et al. "Comparative study of clinical grade human tolerogenic dendritic cells." Journal of translational medicine 9.1 (2011): 1-14.‏

-Adorini, Luciano, et al. "Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands." The Journal of steroid biochemistry and molecular biology 89 (2004): 437-441.‏

-Penna, Giuseppe, et al. "Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+ Foxp3+ regulatory T cells by 1, 25-dihydroxyvitamin D3." Blood 106.10 (2005): 3490-3497.‏

-Adorini, Luciano, et al. "Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands." The Journal of steroid biochemistry and molecular biology 89 (2004): 437-441.‏

-Pedersen, A. W., et al. "Phenotypic and functional markers for 1α, 25-dihydroxyvitamin D3-modified regulatory dendritic cells." Clinical & Experimental Immunology 157.1 (2009): 48-59.‏

-Széles, Lajos, et al. "1, 25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype." The Journal of Immunology 182.4 (2009): 2074-2083.‏

-Ferreira, Gabriela Bomfim, et al. "Differential protein pathways in 1, 25-dihydroxyvitamin D3 and dexamethasone modulated tolerogenic human dendritic cells." Journal of proteome research 11.2 (2012): 941-971.‏

-Raïch-Regué, Dàlia, et al. "Differential effects of monophosphoryl lipid A and cytokine cocktail as maturation stimuli of immunogenic and tolerogenic dendritic cells for immunotherapy." Vaccine 30.2 (2012): 378-387.‏

-Raϊch‐Regué, Dàlia, et al. "Stable antigen‐specific T‐cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients." European journal of immunology 42.3 (2012): 771-782.‏

-Ferreira, Gabriela Bomfim, et al. "Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways." Cell reports 10.5 (2015): 711-725.‏

-Malaguarnera, L., et al. "Vitamin D3 regulates LAMP3 expression in monocyte derived dendritic cells." Cellular Immunology 311 (2017): 13-21.‏

-Lee, Wai-Ping, et al. "Immunomodulatory Effects of 1, 25-Dihydroxyvitamin D 3 on Dendritic Cells Promote Induction of T Cell Hypo responsiveness to Myelin-Derived Antigens." Journal of Immunology Research 2016 (2016).‏

-Navarro-Barriuso, Juan, et al. "MAP7 and MUCL1 are biomarkers of Vitamin D3-induced tolerogenic dendritic cells in multiple sclerosis patients." Frontiers in immunology 10 (2019): 1251.‏

-Farias, Alessandro S., et al. "Vitamin D3 Induces IDO+ Tolerogenic DC s and Enhances Treg, Reducing the Severity of EAE." CNS neuroscience & therapeutics 19.4 (2013): 269-277.‏

-Mansilla, María José, et al. "Beneficial effect of tolerogenic dendritic cells pulsed with MOG autoantigen in experimental autoimmune encephalomyelitis." CNS neuroscience & therapeutics 21.3 (2015): 222-230.‏

-Mansilla, María José, et al. "Cryopreserved vitamin D 3-tolerogenic dendritic cells pulsed with autoantigens as a potential therapy for multiple sclerosis patients." Journal of neuroinflammation 13 (2016): 1-11.‏

-Tacken, Paul J., et al. "Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting." Nature Reviews Immunology 7.10 (2007): 790-802.‏

-Unger, Wendy WJ, and Yvette van Kooyk. "‘Dressed for success’ C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells." Current opinion in immunology 23.1 (2011): 131-137.‏

-Ponsaerts, P., V. F. I. Van Tendeloo, and Z. N. Berneman. "Cancer immunotherapy using RNA-loaded dendritic cells." Clinical & Experimental Immunology 134.3 (2003): 378-384.‏

-Boudreau, Jeanette E., et al. "Engineering dendritic cells to enhance cancer immunotherapy." Molecular therapy 19.5 (2011): 841-853.‏

-Shurin, Michael R., et al. "Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow?" Expert Opinion on Biological Therapy 10.11 (2010): 1539-1553.‏

-Cathelin, Dominique, et al. "Dendritic cell–tumor cell hybrids and immunotherapy: what's next?" Cytotherapy 13.7 (2011): 774-785.‏

-Koido, Shigeo, et al. "Cancer immunotherapy by fusions of dendritic cells and tumor cells." (2009): 49-62.‏

-Connolly, Nancy C., et al. "Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cells is safe and induces immunogenicity in HIV-1-infected individuals." Clinical and Vaccine Immunology 15.2 (2008): 284-292.‏

-Brody, J. D., and E. G. Engleman. "DC-based cancer vaccines: lessons from clinical trials." Cytotherapy 6.2 (2004): 122-127.‏

-Van Tendeloo, Viggo FI, et al. "Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells." Blood, The Journal of the American Society of Hematology 98.1 (2001): 49-56.‏

-Boczkowski, David, et al. "Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo." The Journal of experimental medicine 184.2 (1996): 465-472.‏

-Kavanagh, Daniel G., et al. "Expansion of HIV-specific CD4+ and CD8+ T cells by dendritic cells transfected with mRNA encoding cytoplasm-or lysosome-targeted Nef." Blood 107.5 (2006): 1963-1969.‏

-Melhem, Nada M., et al. "Robust CD4+ and CD8+ T cell responses to SIV using mRNA‐transfected DC expressing autologous viral Ag." European Journal of Immunology 37.8 (2007): 2164-2173.‏

-Sæbøe-Larssen, Stein, Ellen Fossberg, and Gustav Gaudernack. "mRNA-based electro transfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT)." Journal of immunological methods 259.1-2 (2002): 191-203.‏

-Strobel, I., et al. "Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes." Gene therapy 7.23 (2000): 2028-2035.‏

-Steinman, Ralph M., and Jacques Banchereau. "Taking dendritic cells into medicine." Nature 449.7161 (2007): 419-426.‏

-Cabezón, Raquel, and Daniel Benítez-Ribas. "Therapeutic potential of tolerogenic dendritic cells in IBD: from animal models to clinical application." Clinical and developmental immunology 2013 (2013).‏

-Wculek, Stefanie K., et al. "Dendritic cells in cancer immunology and immunotherapy." Nature Reviews Immunology 20.1 (2020): 7-24.‏

-Santos, Patricia M., and Lisa H. Butterfield. "Dendritic cell–based cancer vaccines." The Journal of Immunology 200.2 (2018): 443-449.‏

-Giannoukakis, Nick, et al. "Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients." Diabetes care 34.9 (2011): 2026-2032.‏

-Benham, Helen, et al. "Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype–positive rheumatoid arthritis patients." Science translational medicine 7.290 (2015): 290ra87-290ra87.‏

-Jauregui-Amezaga, Aranzazu, et al. "Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a phase I study." Journal of Crohn's and Colitis 9.12 (2015): 1071-1078.‏

-Suwandi, Jessica S., et al. "Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells." Clin Exp Rheumatol 33.4 Suppl 92 (2015): 97-103.‏

-Bell, G. M., et al. "Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis." Annals of the rheumatic diseases 76.1 (2017): 227-234.‏

-Zarkhin, Valeriya, et al. "Characterization of intra-graft B cells during renal allograft rejection." Kidney international 74.5 (2008): 664-673.‏

-Zarkhin, Valeriya, Geetha Chalasani, and Minnie M. Sarwal. "The yin and yang of B cells in graft rejection and tolerance." Transplantation reviews 24.2 (2010): 67-78.‏

-Barnas, Jennifer L., Richard John Looney, and Jennifer H. Anolik. "B cell targeted therapies in autoimmune disease." Current opinion in immunology 61 (2019): 92-99.‏

-Li, Rui, Kristina R. Patterson, and Amit Bar-Or. "Reassessing B cell contributions in multiple sclerosis." Nature immunology 19.7 (2018): 696-707.‏

-Iwata, Yohei, et al. "Characterization of a rare IL-10–competent B-cell subset in humans that parallels mouse regulatory B10 cells." Blood, The Journal of the American Society of Hematology 117.2 (2011): 530-541.‏

-DiLillo, David J., Takashi Matsushita, and Thomas F. Tedder. "B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer." Annals of the New York Academy of Sciences 1183.1 (2010): 38-57.‏

-Sun, Jia-Bin, Cecil Czerkinsky, and Jan Holmgren. "B lymphocytes treated in vitro with antigen coupled to cholera toxin B subunit induce antigen-specific Foxp3+ regulatory T cells and protect against experimental autoimmune encephalomyelitis." The Journal of Immunology 188.4 (2012): 1686-1697.‏

-Su, Yan, et al. "B cells “transduced” with TAT-fusion proteins can induce tolerance and protect mice from diabetes and EAE." Clinical Immunology 140.3 (2011): 260-267.‏

-Pennati, Andrea, et al. "Regulatory B cells induce formation of IL-10-expressing T cells in mice with autoimmune neuroinflammation." Journal of Neuroscience 36.50 (2016): 12598-12610.‏

-Zhang, Ai-Hong, et al. "B-cell delivered gene therapy for tolerance induction: role of autoantigen-specific B cells." Journal of autoimmunity 35.2 (2010): 107-113.‏

-Calderón‐Gómez, Elisabeth, et al. "Reprogrammed quiescent B cells provide an effective cellular therapy against chronic experimental autoimmune encephalomyelitis." European journal of immunology 41.6 (2011): 1696-1708.‏

-Yanaba, Koichi, et al. "A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses." Immunity 28.5 (2008): 639-650.‏

-Matsushita, Takashi, et al. "Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression." The Journal of clinical investigation 118.10 (2008): 3420-3430.‏

-Pennati, Andrea, et al. "Regulatory B cells normalize CNS myeloid cell content in a mouse model of multiple sclerosis and promote oligodendrogenesis and remyelination." Journal of Neuroscience 40.26 (2020): 5105-5115.‏

-Caligiuri, Michael A. "Human natural killer cells." Blood, The Journal of the American Society of Hematology 112.3 (2008): 461-469.‏

-Freud, Aharon G., et al. "The broad spectrum of human natural killer cell diversity." Immunity 47.5 (2017): 820-833.‏

-Vivier, Eric, et al. "Functions of natural killer cells." Nature immunology 9.5 (2008): 503-510.‏

-Gianchecchi, Elena, Domenico Vittorio Delfino, and Alessandra Fierabracci. "NK cells in autoimmune diseases: Linking innate and adaptive immune responses." Autoimmunity Reviews 17.2 (2018): 142-154.‏

[-Mimpen, Max, et al. "Natural killer cells in multiple sclerosis: a review." Immunology letters 222 (2020): 1-11.‏

-Netea, Mihai G., Jessica Quintin, and Jos WM Van Der Meer. "Trained immunity: a memory for innate host defense." Cell host & microbe 9.5 (2011): 355-361.‏

-Cohan, Stanley L., et al. "Daclizumab: mechanisms of action, therapeutic efficacy, adverse events and its uncovering the potential role of innate immune system recruitment as a treatment strategy for relapsing multiple sclerosis." Biomedicines 7.1 (2019): 18.‏

-Luessi, Felix, et al. "GFAPα IgG-associated encephalitis upon daclizumab treatment of MS." Neurology-Neuroimmunology Neuroinflammation 5.5 (2018).‏

-Gold, Ralf, et al. "Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial." The Lancet 381.9884 (2013): 2167-2175.‏

-Kappos, Ludwig, et al. "Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis." New England Journal of Medicine 373.15 (2015): 1418-1428.‏

-Lancet, The. "End of the road for daclizumab in multiple sclerosis." Lancet (London, England) 391.10125 (2018): 1000.‏

-Shimasaki, Noriko, Amit Jain, and Dario Campana. "NK cells for cancer immunotherapy." Nature reviews Drug discovery 19.3 (2020): 200-218.‏

-Fang, Fang, Weihua Xiao, and Zhigang Tian. "NK cell-based immunotherapy for cancer." Seminars in immunology. Vol. 31. Academic Press, 2017.‏

-Hegde, Subramanya, et al. "Autoreactive natural killer T cells: promoting immune protection and immune tolerance through varied interactions with myeloid antigen‐presenting cells." Immunology 130.4 (2010): 471-483.‏

-Pratschke, Johann, Diana Stauch, and Katja Kotsch. "Role of NK and NKT cells in solid organ transplantation." Transplant International 22.9 (2009): 859-868.‏

-Wu, Lan, and Luc V. Kaer. "Natural killer T cells and autoimmune disease." Current molecular medicine 9.1 (2009): 4-14.‏

-Kriegsmann, Katharina, et al. "NKT cells—New players in CAR cell immunotherapy?" European journal of haematology 101.6 (2018): 750-757.‏

-Sakuishi, Kaori, Sachiko Miyake, and Takashi Yamamura. "Role of NK cells and invariant NKT cells in multiple sclerosis." Molecular Basis of Multiple Sclerosis: The Immune System (2010): 127-147.‏

-Van Kaer, Luc, and Lan Wu. "Therapeutic potential of invariant natural killer T cells in autoimmunity." Frontiers in immunology 9 (2018): 519.‏

-Van Kaer, Luc, Lan Wu, and Vrajesh V. Parekh. "Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis." Immunology 146.1 (2015): 1-10.‏

-Exley, Mark A., S. Brian Wilson, and Steven P. Balk. "Isolation and functional use of human NKT cells." Current protocols in immunology 119.1 (2017): 14-11.‏

-Ma, Huijuan, and Chang-Qing Xia. "Phenotypic and functional diversities of myeloid-derived suppressor cells in autoimmune diseases." Mediators of Inflammation 2018 (2018).‏

-Wegner, Anja, Johan Verhagen, and David C. Wraith. "Myeloid‐derived suppressor cells mediate tolerance induction in autoimmune disease." Immunology 151.1 (2017): 26-42.‏

-Veglia, Filippo, Michela Perego, and Dmitry Gabrilovich. "Myeloid-derived suppressor cells coming of age." Nature immunology 19.2 (2018): 108-119.‏

-Bronte, Vincenzo, et al. "Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards." Nature communications 7.1 (2016): 12150.‏

- Iacobaeus, Ellen, et al. "Phenotypic and functional alterations of myeloid‐derived suppressor cells during the disease course of multiple sclerosis." Immunology and Cell Biology 96.8 (2018): 820-830.‏

- Steinman, Ralph M. "Dendritic cells: versatile controllers of the immune system." Nature medicine 13.10 (2007): 1155-1159.‏

- Miller, Stephen D., Danielle M. Turley, and Joseph R. Podojil. "Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease." Nature Reviews Immunology 7.9 (2007): 665-677.‏

- Smith, Cassandra E., and Stephen D. Miller. "Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities." Journal of autoimmunity 27.4 (2006): 218-231.‏

- Turley, Danielle M., and Stephen D. Miller. "Peripheral tolerance induction using ethylene carbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis." The Journal of Immunology 178.4 (2007): 2212-2220.‏

- Lutterotti, Andreas, Mireia Sospedra, and Roland Martin. "Antigen-specific therapies in MS—Current concepts and novel approaches." Journal of the neurological sciences 274.1-2 (2008): 18-22.‏

- Pishesha, Novalia, et al. "Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease." Proceedings of the National Academy of Sciences 114.12 (2017): 3157-3162.‏

- Lutterotti, A., et al. "Establish tolerance in MS with myelin-peptide coupled red blood cells-ETIMS (red) trial." MULTIPLE SCLEROSIS JOURNAL. Vol. 24. 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND: SAGE PUBLICATIONS LTD, 2018.‏

- Malik, Nafees. "Allogeneic versus autologous stem-cell therapy." BioPharm International 25.7 (2012).‏

- Snowden, J. A., et al. "Hematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation." Bone marrow transplantation 47.6 (2012): 770-790.‏

- Majhail, Navneet S., et al. "Indications for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation." Biology of Blood and Marrow Transplantation 21.11 (2015): 1863-1869.‏

- Quarles, R. H., W. B. Macklin, and P. Morell. "Basic neurochemistry: molecular, cellular and medical aspects." Myelin formation, structure and biochemistry. Elsevier Science (2006).‏

- Hohlfeld, Reinhard, et al. "The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets." The Lancet Neurology 15.2 (2016): 198-209.‏

- Rangachari, Manu, and Vijay K. Kuchroo. "Using EAE to better understand principles of immune function and autoimmune pathology." Journal of autoimmunity 45 (2013): 31-39.‏

- Greer, Judith M. "Autoimmune T-cell reactivity to myelin proteolipids and glycolipids in multiple sclerosis." Multiple sclerosis international 2013 (2013).‏

- Sáez-Torres, Irene, et al. "Specific proliferation towards myelin antigens in patients with multiple sclerosis during a relapse." Autoimmunity 35.1 (2002): 45-50.‏

- Sáez-Torres, Irene, et al. "Specific proliferation towards myelin antigens in patients with multiple sclerosis during a relapse." Autoimmunity 35.1 (2002): 45-50.‏

- Walczak, Agata, et al. "Transdermal application of myelin peptides in multiple sclerosis treatment." JAMA neurology 70.9 (2013): 1105-1109.‏

- Warren, K. G., and Ingrid Catz. "Administration of myelin basic protein synthetic peptides to multiple sclerosis patients." Journal of the neurological sciences 133.1-2 (1995): 85-94.‏

- Weiner, Howard L., et al. "Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis." Science 259.5099 (1993): 1321-1324.‏

- Goebels, Norbert, et al. "Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence." Brain 123.3 (2000): 508-518.‏

- Tuohy, Vincent K., and R. Philip Kinkel. "Epitope spreading: a mechanism for progression of autoimmune disease." ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS-ENGLISH EDITION- 48.5 (2000): 347-352.‏

- Tuohy, Vincent K., et al. "The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis." Immunological reviews 164.1 (1998): 93-100.‏

- Anderton, Stephen M., et al. "Influence of a dominant cryptic epitope on autoimmune T cell tolerance." Nature immunology 3.2 (2002): 175-181.‏

- Kappos, Ludwig, et al. "A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis." New England Journal of Medicine 362.5 (2010): 387-401.‏

- Sallusto, Federica, and Antonio Lanzavecchia. "The instructive role of dendritic cells on T-cell responses." Arthritis Research & Therapy 4.3 (2002): 1-6.‏

- Steinman, Ralph M. "Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation." The Mount Sinai journal of medicine, New York 68.3 (2001): 160-166.‏

- Sagar, Divya, et al. "Mechanisms of dendritic cell trafficking across the blood–brain barrier." Journal of Neuroimmune Pharmacology 7 (2012): 74-94.‏

- Pinheiro, Melissa A. Lopes, et al. "Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1862.3 (2016): 461-471.‏

- Sabado, Rachel L., Sreekumar Balan, and Nina Bhardwaj. "Dendritic cell-based immunotherapy." Cell research 27.1 (2017): 74-95.‏

- Mohammad, Mohammad G., et al. "Dendritic cells and multiple sclerosis: disease, tolerance and therapy." International journal of molecular sciences 14.1 (2012): 547-562.‏

- Ballabh, Praveen, Alex Braun, and Maiken Nedergaard. "The blood–brain barrier: an overview: structure, regulation, and clinical implications." Neurobiology of disease 16.1 (2004): 1-13.‏

- De Vries, Helga E., et al. "The blood-brain barrier in neuroinflammatory diseases." Pharmacological reviews 49.2 (1997): 143-156.‏

- Pardridge, William M. "The blood-brain barrier: bottleneck in brain drug development." NeuroRx 2 (2005): 3-14.‏

- He, Quanguo, et al. "Towards improvements for penetrating the blood–brain barrier—recent progress from a material and pharmaceutical perspective." Cells 7.4 (2018): 24.‏

- Teo, Grace SL, et al. "Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms." Stem cells 30.11 (2012): 2472-2486.‏

- Colton, Carol A. "Immune heterogeneity in neuroinflammation: dendritic cells in the brain." Journal of Neuroimmune Pharmacology 8 (2013): 145-162.‏

- Ukena, Sya N., et al. "Isolation strategies of regulatory T cells for clinical trials: phenotype, function, stability, and expansion capacity." Experimental hematology 39.12 (2011): 1152-1160.‏

- Rice, Claire M., et al. "Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases." The Lancet 382.9899 (2013): 1204-1213.‏

- Teo, Grace SL, et al. "Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms." Stem cells 30.11 (2012): 2472-2486.‏

- Sonar, Sandip Ashok, and Girdhari Lal. "Differentiation and transmigration of CD4 T cells in neuroinflammation and autoimmunity." Frontiers in immunology 8 (2017): 1695.‏

- Meena, Megha, and Nathalie Cools. "On the road to new treatments for multiple sclerosis: Targeting dendritic cell migration into the central nervous system." Neural Regeneration Research 14.12 (2019): 2088.‏

- Matsushita, Takashi, et al. "Mesenchymal stem cells transmigrate across brain microvascular endothelial cell monolayers through transiently formed inter-endothelial gaps." Neuroscience letters 502.1 (2011): 41-45.‏

- Schneider‐Hohendorf, Tilman, et al. "Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis." European journal of immunology 40.12 (2010): 3581-3590.‏

- Takeshita, Yukio, and Richard M. Ransohoff. "Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models." Immunological reviews 248.1 (2012): 228-239.‏

- Chamberlain, Giselle, et al. "Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear." PloS one 6.9 (2011): e25663.‏

- Ding, Yaozhong, Jiangnan Xu, and Jonathan S. Bromberg. "Regulatory T cell migration during an immune response." Trends in immunology 33.4 (2012): 174-180.‏

- Engelhardt, Britta, and Richard M. Ransohoff. "Capture, crawl, cross: the T cell code to breach the blood–brain barriers." Trends in immunology 33.12 (2012): 579-589.‏

- Worbs, Tim, Swantje I. Hammerschmidt, and Reinhold Förster. "Dendritic cell migration in health and disease." Nature Reviews Immunology 17.1 (2017): 30-48.‏

- Feger, U., et al. "Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients." Clinical & Experimental Immunology 147.3 (2007): 412-418.‏

- Zozulya, Alla L., and Heinz Wiendl. "The role of regulatory T cells in multiple sclerosis." Nature clinical practice Neurology 4.7 (2008): 384-398.‏

- Michel, Laure, et al. "Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor α-chain are excluded from the analysis." The Journal of clinical investigation 118.10 (2008): 3411-3419.‏

- Wei, Shuang, Ilona Kryczek, and Weiping Zou. "Regulatory T-cell compartmentalization and trafficking." Blood 108.2 (2006): 426-431.‏

- Tiberio, Laura, et al. "Chemokine and chemotactic signals in dendritic cell migration." Cellular & molecular immunology 15.4 (2018): 346-352.‏

- De Laere, Maxime, et al. "Shuttling tolerogenic dendritic cells across the blood–brain barrier in vitro via the introduction of de novo C–C chemokine receptor 5 expression using messenger RNA electroporation." Frontiers in Immunology 8 (2018): 1964.‏

- Kim, Jung Eun, Senthilkumar Kalimuthu, and Byeong-Cheol Ahn. "In vivo cell tracking with bioluminescence imaging." Nuclear Medicine and Molecular Imaging 49 (2015): 3-10.‏

- Wang, Hui, et al. "Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging." Stem cells 27.7 (2009): 1548-1558.‏

- Kleinovink, Jan Willem, et al. "A dual-color bioluminescence reporter mouse for simultaneous in vivo imaging of T cell localization and function." Frontiers in immunology 9 (2019): 3097.‏

- Maes, Wim, et al. "In vivo bioluminescence imaging in an experimental mouse model for dendritic cell-based immunotherapy against malignant glioma." Journal of neuro-oncology 91 (2009): 127-139.‏

- Ben-Hur, Tamir. "Cell therapy for multiple sclerosis." Neurotherapeutics 8.4 (2011): 625-642.‏

- Høglund, Rune A., et al. "A one year follow-up study of natural killer and dendritic cells activities in multiple sclerosis patients receiving glatiramer acetate (GA)." PLoS One 8.4 (2013): e62237.‏

- Kivisäkk, Pia, et al. "Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis." PLoS One 9.7 (2014): e103716.‏

- Quillien, Véronique, et al. "Biodistribution of radiolabeled human dendritic cells injected by various routes." European journal of nuclear medicine and molecular imaging 32 (2005): 731-741.‏

- Lesterhuis, W. Joost, et al. "Route of administration modulates the induction of dendritic cell vaccine–induced antigen-specific T Cells in advanced melanoma patients." Clinical Cancer Research 17.17 (2011): 5725-5735.‏




DOI: http://dx.doi.org/10.52155/ijpsat.v39.2.5462

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Maged Naser

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.