Numerical Analysis of Axial Capacity and Ductility of RC Thin-Section Columns with Various Hoop’s Configurations

I Ketut Sudarsana, I Gede Gegiranang Wiryadi

Abstract


This numerical study is done to evaluate the effect of confinement on the axial capacity and ductility of thin section columns using the plastic damage plasticity (CDP) model in Abaqus. Seven specimens of short columns with the size of 100x400x300 mm subjected to uniaxial compression loads were analyzed based on material parameters and modeling technics that were first validated using an experimental specimen. The variation in confinement was made by changes in the configurations of the column hoops giving the variation on the hoops volumetric ratios such as 1,06% (C1), 1,16% (C2), 1,25% (C3),1,34% (C4), 1,69% (C5), 1,25% (C6) and 2,02% (C7). All specimen models have longitudinal rebars of 10D13 (As = 1327 mm2) and hoops Ø5.6 with a yield strength of 437 MPa and 284 MPa, respectively. The compressive concrete strength of 21,5 MPa was considered according to the tested specimen for validation. The validated results show that the finite element analysis can predict well the behaviors of the tested column specimen in terms of stress on concrete, reinforcement, and the crack pattern. The analysis results of the hoops parameters show that increasing the hoops' volumetric ratio can increase the capacity of the concrete core but not the column's ductility. The maximum increase in the column capacity of 87.15% occurs in specimen C4 with the hoops volumetric ratio of 1,34% and the lowest of 58.14% occurs in specimen C3 with the hoops volumetric ratio of 1,25%. The specimen model C7 with the highest hoops volumetric ratio of 2.02% increases the capacity by only 65.27%. The effectiveness of confinement is not only determined by the higher values of the hoops' volumetric ratio but also by the proper configurations of the hoops to obtain effective confining effects on the concrete core.

Keywords


Thin column section, confinement, finite element analysis, capacity, ductility

Full Text:

PDF

References


Badan Standarisasi Nasional, SNI 2847:2019 Persyaratan beton struktural untuk bangunan gedung dan penjelasan. Jakarta, 2019, p. 695.

M. Saatcioglu, “Design of Slender Columns,” in Design Handbook (Metric), ACI, Ed., 2010, pp. 1–26.

I. K. Sudarsana, “Experimental study on confined concrete of thin column sections,” in Konferensi Nasional Teknik Sipil 7 (KoNTekS7), Solo, 2013.

S. W. N Razvi and M. G. Shaikh, “Effect of confinement on behavior of short concrete column,” in Procedia Manufacturing, 2018.

D. De Domenico, D. Falliano, and G. Ricciardi, “Confinement effect of different arrangements of transverse reinforcement on axially loaded concrete columns: An experimental study,” J Mech Behav Mater, vol. 28, no. 1, 2019.

ACI Commitee 318, Building Code Requirements for Structural Concrete and Commentary (ACI 318M-19). Farmington Hills, 2019.

M. Saatcioglu and S. R. Razvi, “Strength and ductility of confined concrete,” vol. 118, no. 6, pp. 1590–1607, 1992.

D. Kent and R. Park, “Flexural members with confined concrete,” 1971.

J. B. Mander, M. J. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete,” 1988.

Tavio Tavio, Iman Wimbadi, Ardiansyah Kusuma Negara, and Recky Tirtajaya, “Effects of confinement on interaction diagrams of square reinforced concrete columns,” 2009.

J. Liu et al., “Behavior of axially loaded stirrup confinement rectangular concrete-filled steel tubular stub columns,” vol. 2019, 2019.

H. Karim, M. N. Sheikh, and M. N. Hadi, “Confinement of Circular Concrete Columns: A review,” 2014.

S. K. Shahreza, G. Baietti, G. Quartarone, M. Santandrea, and C. Carloni, “Effect of Steel-Reinforced Grout Confinement on Concrete Square and Cylindrical Columns,” ACI Struct J, vol. 117, no. 5, 2020.

F. Kumaseh, S. Wallah, and R. Pandaleke, “Pengaruh Jarak Sengkang Terhadap Kapasitas Beban Aksial Maksimum Kolom Beton Berpenampang Lingkaran Dan Segi Empat,” 2015.

I. K. Sudarsana, I. G. Gegiranang Wiryadi, and I. G. Adi Susila, “Finite element analysis of the effect M/V ratios on punching shear strength of edge slab column connections of flat plate structure,” vol. 276, 2019.

I. K. Sudarsana, I. G. G. Wiryadi, and I. G. A. Susila, “Finite element analysis of punching shear-unbalanced moment interactions at edge column-flat plate connections,” vol. 20, no. 1, pp. 91–100, Oct. 2022.

I. G. G. Wiryadi, I. K. D. K. Tubuh, and I. P. A. P. Wirawan, “Pemodelan Tiga Dimensi Beton Silinder yang Diuji Tekan dengan Variasi Tipe Mesh Element dan Efek Reduksi Integrasi,” vol. 25, no. 1, pp. 49–56, Jan. 2021.

S. K. John, Y. Nadir, and K. Girija, “Nonlinear finite element modelling of concrete columns confined with textile reinforced mortar,” in IOP Conference Series: Earth and Environmental Science, 2020.

S. Amirkhani and M. Lezgy-Nazargah, “Nonlinear finite element analysis of reinforced concrete columns: Evaluation of different modeling approaches for considering stirrup confinement effects,” vol. 23, no. 5, 2022.

Abaqus, “Getting Started with Abaqus: Interactive Edition,” in Abaqus 6.14 Online Documentation, USA: Dassault Systèmes Simulia, 2014.

P. Kral, P. Hradil, J. Kala, F. Hokes, and M. Husek, “Identification of the Parameters of a Concrete Damage Material Model,” Procedia Eng, vol. 172, pp. 578–585, 2017.

F. Micelli, A. Cascardi, and M. A. Aiello, “Pre-Load Effect on CFRP-Confinement of Concrete Columns: Experimental and Theoretical Study,” Crystals (Basel), vol. 11, no. 2, p. 177, Feb. 2021.

I. K. Sudarsana, I. G. Gegiranang Wiryadi, and I. G. Adi Susila, “Analisis Perilaku Hubungan Pelat-Kolom Tepi Struktur Pelat Datar menggunakan Concrete Damage Plasticity (CDP) dalam Abaqus,” vol. 5, no. 2, 2017 [Online]. Available: https://ojs.unud.ac.id/index.php/jsn/article/view/32932

L. Qingfu, G. Wei, and K. Yihang, “Parameter calculation and verification of concrete plastic damage model of ABAQUS,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, May 2020.

E. Hognestad, “Equation for the Stress-Strain Curve of Concrete,” vol. 61, no. 3, 1964.

Livermore Software Technology Corporation, “Hourglass (HG) Modes Hourglassing Avoiding or Minimizing Hourglass Modes,” pp. 1–7, 2012.

A. Earij, “Nonlinear three–dimensional finite–element modelling of reinforced–concrete beams: Computational challenges and experimental validation,” Eng Fail Anal, vol. 82, pp. 92–115, 2017.

S. P. MacHmoed, T. Tavio, and I. G. P. Raka, “Potential of new innovative confinement for square reinforced concrete columns,” in Journal of Physics: Conference Series, 2020.

H. Elbakry, T. Ebeido, E. T. M. El-Tony, and M. Ali, “Behavior of Square RC Short Columns with New Arrangement of Ties Subjected to Axial Load: Experimental and Numerical Studies,” vol. 66, no. 2, pp. 367–383, Mar. 2022.




DOI: http://dx.doi.org/10.52155/ijpsat.v38.1.5256

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 I Ketut Sudarsana, I Gede Gegiranang Wiryadi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.