Crowdsourcing of Twitter Social Media Data to Analyze the Hail Disaster in Surabaya

Setyo Aji Pramono, Reza Bayu Perdana, Kusuma Kusuma, Deffi Ayu Puspito Sari

Abstract


The purpose of this study is to describe the use of crowdsourcing data sources from social media, especially Twitter, in carrying out an initial analysis of an extreme weather event, in this case, hail which occurred in the city of Surabaya on February 21st, 2022. The method used in this study is data mining using data sourced from Twitter with the keywords "hujan AND es" (“Rain AND Ice”) . The initial data withdrawal was carried out twice. The first only pulled data from tweets sent from the Surabaya area and its surroundings, while the second pulled data from tweets sent from all locations. Tweet count aggregation and early tweet detection were used to estimate the time of occurrence. Extracting location data from tweets is used to map the location of the incident. Adding supporting data in the form of data on weather conditions at the time of the estimated event is carried out to enrich the information and validator information obtained through crowdsourcing on social media. Meteorological analysis was carried out at the incident's time and location based on the analysis's results using social media. The supporting data used in conducting meteorological analysis are data on air temperature, air humidity, wind speed at several locations of automatic weather stations. Based on Twitter data crowdsourcing, this study's results, hail in Surabaya on February 21st, 2022, occurred at around 14:50 Local Time (LT) and was located in the western part of Surabaya.

Keywords


Twitter, Crowdsourcing, Hail.

Full Text:

PDF

References


A.Rafiq, “Dampak Media Sosial Terhadap Perubahan Sosisl Suatu Masyarakat,” Jurnal Ilmu Sosial dan Ilmu Politik Global Komunika, 2020.

A. Furqon, D. Hermansyah, R. Sari, A. Sukma, Y. Akbar, and N. Aini Rakhmawati, “Analisis Sosial Media Pemerintah Daerah di Indonesia Berdasarkan Respons Warganet,” Sosioteknologi, vol. 17, no. 2, pp. 177–190, 2018.

M. L. Johnson, L. K. Campbell, E. S. Svendsen, and H. L. McMillen, “Mapping Urban Park Cultural Ecosystem Services: A Comparison of Twitter and Semi-Structured Interview Methods,” Sustain. 2019, Vol. 11, Page 6137, vol. 11, no. 21, p. 6137, Nov. 2019, doi: 10.3390/SU11216137.

R. Li, K. H. Lei, R. Khadiwala, and K. C. C. Chang, “TEDAS: A twitter-based event detection and analysis system,” Proc. - Int. Conf. Data Eng., pp. 1273–1276, 2012, doi: 10.1109/ICDE.2012.125.

J. Kropczynski et al., “Identifying Actionable Information on Social Media for Emergency Dispatch,” Proc. ISCRAM Asia Pasific, 2018.

S. Xu, S. Li, R. Wen, and W. Huang, “Traffic Event Detection Using Twitter Data Based On Association Rules,” Remote Sens. Spat. Inf. Sci., vol. IV, no. 2, 2019, doi: 10.5194/isprs-annals-IV-2-W5-543-2019.

D. Zhou, X. Zhang, and Y. He, “Event extraction from Twitter using Non-Parametric Bayesian Mixture Model with Word Embeddings,” the Association for Computational Linguistics, vol. 1. pp. 808–817, 2017.

A. Martín, A. B. A. Julián, and F. Cos-Gayón, “Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain),” Cities, vol. 86, pp. 37–50, Mar. 2019, doi: 10.1016/J.CITIES.2018.12.014.

A. Crooks, A. Croitoru, A. Stefanidis, and J. Radzikowski, “Earthquake: Twitter as a Distributed Sensor System,” Trans. GIS, vol. 17, no. 1, pp. 124–147, 2013, doi: 10.1111/j.1467-9671.2012.01359.x.

M. Mendoza, B. Poblete, and I. Valderrama, “Nowcasting earthquake damages with Twitter,” EPJ Data Sci., vol. 8, no. 1, 2019, doi: 10.1140/epjds/s13688-019-0181-0.

E. Hawkins et al., “Hourly weather observations from the Scottish Highlands (1883–1904) rescued by volunteer citizen scientists,” Geosci. Data J., vol. 6, no. 2, pp. 160–173, Nov. 2019, doi: 10.1002/GDJ3.79.

L. Butgereit, “CrowdSourced Weather Reports: An Implementation of the μ Model for Spotting Weather Information in Twitter,” pp. 978–979, 2014.

Y. Zhu, S. Zhang, Y. Li, H. Lu, K. Shi, and Z. Niu, “Social weather: A review of crowdsourcing-assisted meteorological knowledge services through social cyberspace,” Geosci. Data J., vol. 7, no. 1, pp. 61–79, Jun. 2020, doi: 10.1002/GDJ3.85.

K. A. Lachlan, P. R. Spence, X. Lin, K. M. Najarian, and M. Del Greco, “Twitter Use During a Weather Event: Comparing Content Associated with Localized and Nonlocalized Hashtags,” Commun. Stud., vol. 65, no. 5, pp. 519–534, 2014, doi: 10.1080/10510974.2014.956940.

V. Grasso, I. Zaza, F. Zabini, G. Pantaleo, P. Nesi, and A. Crisci, “Weather events identification in social media streams: tools to detect their evidence in Twitter,” Open Source Geospatial Res. Educ. Symp., 2016, doi: 10.7287/peerj.preprints.2241v2.

K. Purwandari, R. Perdana, J. Sigalingging, R. Rahutomo, and B. Pardamean, “Automatic Smart Crawling on Twitter for Weather Information in Indonesia,” 6th Int. Conf. Comput. Sci. Artif. Intell., 2021, Accessed: Feb. 08, 2023. [Online]. Available: https://hal.science/hal-03634948

R. Hologa and R. Glaser, “The Societal Echo of Severe Weather Events: Ambient Geospatial Information (AGI) on a Storm Event,” ISPRS Int. J. Geo-Information 2021, Vol. 10, Page 815, vol. 10, no. 12, p. 815, Dec. 2021, doi: 10.3390/IJGI10120815.

Y. Gao, S. Wang, A. Padmanabhan, J. Yin, and G. Cao, “Mapping spatiotemporal patterns of events using social media: a case study of influenza trends,” Int. J. Geogr. Inf. Sci., vol. 32, no. 3, pp. 425–449, Mar. 2018, doi: 10.1080/13658816.2017.1406943.

K. Friedrich et al., “CHAT: The Colorado hail accumulation from thunderstorms project,” Bull. Am. Meteorol. Soc., vol. 100, no. 3, pp. 459–472, 2019, doi: 10.1175/BAMS-D-16-0277.1.

M. R. Kumjian and K. Lombardo, “A Hail Growth Trajectory Model for Exploring the Environmental Controls on Hail Size: Model Physics and Idealized Tests,” J. Atmos. Sci., vol. 77, no. 8, pp. 2765–2791, Jul. 2020, doi: 10.1175/JAS-D-20-0016.1.

Z. Sokol, J. Szturc, J. Orellana-Alvear, J. Popová, A. Jurczyk, and R. Célleri, “The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review,” Remote Sens. 2021, Vol. 13, Page 351, vol. 13, no. 3, p. 351, Jan. 2021.

M. Šálek, J.-L. Cheze, J. Handwerker, L. Delobbe, and R. Uijlenhoet, “Radar techniques for identifying precipitation type and estimating quantity of precipitation Document of COST Action 717, WG 1 Task WG 1-2 1 Background,” 2019.

E. M. Murillo, C. R. Homeyer, and J. T. Allen, “A 23-Year severe hail climatology using GridRad MESH observations,” Mon. Weather Rev., vol. 149, no. 4, pp. 945–958, 2021, doi: 10.1175/MWR-D-20-0178.1.

J. H. Jeong, J. Fan, C. R. Homeyer, and Z. Hou, “Understanding Hailstone Temporal Variability and Contributing Factors over the U.S. Southern Great Plains,” J. Clim., vol. 33, no. 10, pp. 3947–3966, Apr. 2020.

J. TANG, X. GUO, Y. CHANG, G. LU, and P. QI, “Temporospatial Distribution and Trends of Thunderstorm, Hail, Gale, and Heavy Precipitation Events over the Tibetan Plateau and Associated Mechanisms,” J. Clim., vol. 34, no. 24, pp. 9623–9646, Dec. 2021, doi: 10.1175/JCLI-D-21-0494.1.

E. J. Dennis and M. R. Kumjian, “The impact of vertical wind shear on hail growth in simulated supercells,” J. Atmos. Sci., vol. 74, no. 3, pp. 641–663, 2017, doi: 10.1175/JAS-D-16-0066.1.

M. R. Kumjian, Z. J. Lebo, and A. M. Ward, “Storms producing large accumulations of small hail,” J. Appl. Meteorol. Climatol., vol. 58, no. 2, pp. 341–364, 2019, doi: 10.1175/JAMC-D-18-0073.1.

R. J. Trapp, K. A. Hoogewind, and S. Lasher-Trapp, “Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling,” J. Clim., vol. 32, no. 17, pp. 5493–5509, 2019, doi: 10.1175/JCLI-D-18-0740.1.

F. Letson, T. J. Shepherd, R. J. Barthelmie, and S. C. Pryor, “WRF modeling of deep convection and Hail for wind power applications,” J. Appl. Meteorol. Climatol., vol. 59, no. 10, pp. 1717–1733, 2020, doi: 10.1175/JAMC-D-20-0033.1.

G. K. L. A. Dinda Jaelani Hidayat, Agus Tri Sutanto, Achmad Maulana Rafi, “Rancang Bangun Sistem Radiosonde Untuk Pengamatan Profil Udara Atas,” Pros. Semin. Bumi dan Atmos. STMKG, 2018.

F. Flores et al., “The life cycle of a radiosonde,” Bull. Am. Meteorol. Soc., vol. 94, no. 2, pp. 187–198, 2013, doi: 10.1175/BAMS-D-11-00163.1.

https://www.rdocumentation.org/packages/ rtweet/versions/0.7.0

GeoPy (https://geopy.readthedocs.io/en/stable/)




DOI: http://dx.doi.org/10.52155/ijpsat.v37.2.5158

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Setyo Aji P

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.