Utilization Of Aluminum Slag As A Substitutional Material For Cement In The Production Of Normal Concrete And Cellular Lightweight Concrete

Yogie Risdianto, Muhammad Imaduddin, Krisna Dwi Handayani, Lynda Refnitasari

Abstract


The current development of construction development causes the need for cement as a binder in the concrete mixture to increase. It is necessary to have alternative materials that are economical and environmentally friendly as a substitute for cement, one of which is aluminum slag. The research was carried out by utilizing aluminum slag as a substitute for cement in a mixture of normal concrete and lightweight cellular concrete. The purpose of this study was to determine the effect of aluminum slag as a substitute for cement in a mixture of normal concrete and lightweight cellular concrete on the mechanical properties of concrete. This research is a quantitative research by conducting experiments on K-300 quality concrete. The concrete test specimens were varied using 0% aluminum slag; 1.5%; 3%; 4.5%, 6% and 7.5% with cube test objects measuring 15cm x 15cm. The compressive strength test was carried out at the age of 7, 14, 21 and 28 days with 3 specimens at each age, while for the water absorption test at the age of 28 days. The results of the study showed that the maximum compressive strength of aluminum slag was at a level of 1.5%, more than that the compressive strength and volume weight of the concrete would decrease because the air content in the concrete increased in direct proportion to the increase in the aluminum slag content. In the light cellular concrete research results, cement replaced with aluminum slag showed the highest compressive strength in lightweight concrete with a variation of 1.5% with a compressive strength value of 4.3 MPa and a volumetric weight of 669.3 kg/m3 with a variation of 0% for compressive strength 4.2 MPa and a unit weight of 693.3 kg/m3 were obtained for lightweight concrete samples aged 28 days. This can be explained by the large absorption of water in the concrete which is an indication of high porosity, besides that the impact of the increased air content due to aluminum slag causesexpansion on the surface of the concrete.

Keywords


Normal Concrete, Cellular Lightweight Concrete, Aluminum Slag, Compressive Strength.

Full Text:

PDF

References


. ASTM International. 2016. ASTM C869: Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete. Vol. 91.

. ASTM. 1967. C 796 – 97: Standard Test Method for Foaming Agents for Use in Producing Cellular Concrete. Vol. 3.

. ASTM. 2016. C109/109M-16a, ASTM: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or Cube Specimens). Vol. 04.

. Badan Standar Nasional Indonesia. (2000). SNI 03-2834-2000: Tata Cara Pembuatan Rencana Campuran Beton Normal.

. Badan Standar Nasional Indonesia. (2002). SNI 03-3449: Tata Cara Rencana Pembuatan Campuran Beton Ringan Dengan Agregat Ringan.

. Badan Standar Nasional Indonesia. (2016). SNI 1973: Cara Uji Berat Isi, Volume Produksi Campuran Dan Kadar.

. Badan Standardisasi Nasional. (1990). SNI 03-1972-1990 : Metode Pengujian Slump Beton. Jakarta: BSN.

. Badan Standardisasi Nasional. (1990). SNI 03-1974-1990 Metode Pengujian Kuat Tekan Beton. Jakarta: BSN.

. Badan Standardisasi Nasional. (1992). SNI 2914-1992: Spesifikasi Beton Bertulang Kedap Air. Jakarta: BSN.

. Badan Standardisasi Nasional. (2000). SNI 03-2834-2000: Tata Cara Pembuatan Rencana Campuran Beton Normal. Jakarta: BSN.

. Badan Standardisasi Nasional. (2008). SNI 1973-2008: Cara Uji Berat Isi, Volume Produksi Campuran Dan Kadar. Jakarta: BSN.

. Fakhrudin, Muhammad and Yogie Risdianto. 2019. “Pemanfaatan Carbon Nanotube dan Flyash Terhadap Kuat Tekan Pada Pembuatan Beton Ringan Seluler.” Jurnal Rekayasa Teknik Sipil 01:1–7.

. Mahendra, P. & Risdianto, Y. (2019). “Pemanfaatan Limbah Karbit Sebagai Material Pengganti Semen Terhadap Kuat Tekan Beton Normal.” Rekayasa Teknik Sipil 1(2):88–94.

. Nursyafril, Teten, & Muh. Nur Hafidz. (2014). “Pemanfaatan Abu Limbah Pembakaran Barang Mengandung Aluminium Untuk Bahan Campuran Mortar.” TEDC Polban 8(1):41–49.

. Reddy, M.S, & Neeraja, D. (2016). “Mechanical and Durability Aspects of Concrete Incorporating Secondary Aluminium Slag.” Resource-Efficient Technologies 2(4):225–232.

. Reigita, M, & Setiawan, A. (2018). “Pengaruh Penambahan Serpihan Aluminium Sebagai Bahan Parsial Semen Terhadap Kuat Tekan Dan Kuat Tarik Belah Beton.” Widyakala Journal 5(1):38.

. Rusmansah, Y.M., & Risdianto, Y. (2020). “Pada Pembuatan Panel Beton Ringan Dengan Menggunakan Electric Arc Furnace Slag (EAFS) Sebagai Substitusi Pasir.” Rekayasa Teknik Sipil 2(1):100–105.

. Sabir, Saryas Qadir. 1978. Light Weight Concrete. Vol. 9.

. Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.CV.

. Utomo Setyo, Gatot, Krisna Dwi Handayani, and Yogie Risdianto. 2018. “Studi Penggunaan Catalyst, Monomer, Dan Fly Ash Sebagai Material Penyusun Beton Ringan Selular.” Jurnal Rekayasa Teknik Sipil 1(1):186–94.

. Zainudin, Ahmad. 2014. “Pengaruh Variasi Campuran Serbuk Aluminium dalam Pembuatan Bata Beton Ringan dengan Bahan Tambah Serbuk Gipsum.” Universitas Muhammadiyah Surakarta.

. Zakariya, Mochamad Eky and Yogie Risdianto. 2018. “Pengaruh Penambahan Serat Sabut Kelapa Dengan Penggunaan Catalyst, Monomer, Dan Fly Ash Sebagai Material Penyusun Beton Ringan Seluler.” Jurnal Rekayasa Teknik Sipil 1(1):209–15




DOI: http://dx.doi.org/10.52155/ijpsat.v35.2.4771

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yogie Risdianto, Muhammad Imaduddin, Krisna Dwi Handayani, Lynda Refnitasari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.