Machine Learning-Based Intrusion Detection System For Space Monitoring : Case Study Of Farming In Benin

Pélagie HOUNGUE, Romaric SAGBO, Gilles DAHOUE, Julien KOMACLO

Abstract


The Internet of Things (IoT) is one of the major tools of the new era of digital transformation. Through the Internet of Things, we are looking forward to exploring the new technologies in the digital world and how they help in improving the real world. In this work, we provide an overview of the approach used to deploy a surveillance system for monitoring any indoor space in general and specifically for agricultural spaces. The entire process starts after motion detection by motion sensors using Machine Learning techniques. This requires coverage and response processing algorithms implemented in the electronic chain. The electronic part of the system relates to microcontrollers, sensors and communications between them. A mobile application has been created to allow competent authorities to receive alerts for real-time intervention with the aim of preventing the destruction of crops slaughtered near herds passage. We have introduced the monitoring system’s synoptic diagram and its operation along with the power modules description. Prototype has been designed and performance evaluation has been performed to show the system is responsive most of time.


Keywords


Monitoring System; Intrusion Detection System; Machine Learning; Deep Neural Network; Cow Detection.

Full Text:

PDF

References


A. R. Frost, C. P. Schofield, S. A. Beaulah, T. T. Mottram, J. A. Lines, and C. M. Wathes, “A review of livestock monitoring and the need for integrated systems,” Computers and Electronics in Agriculture, vol. 17, no. 2. 1997. doi: 10.1016/s0168-1699(96)01301-4.

C. Aquilani, A. Confessore, R. Bozzi, F. Sirtori, and C. Pugliese, “Review: Precision Livestock Farming technologies in pasture-based livestock systems,” Animal, vol. 16, no. 1. 2022. doi: 10.1016/j.animal.2021.100429.

A. Adnan, A. Muhammed, A. A. A. Ghani, A. Abdullah, and F. Hakim, “An intrusion detection system for the internet of things based on machine learning: Review and challenges,” Symmetry. 2021. doi: 10.3390/sym13061011.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7, 2013, doi: 10.1016/j.future.2013.01.010.

P. Houngue, R. Sagbo, and C. Kedowide, “An Hybrid Novel Layered Architecture and Case Study: IoT for Smart Agriculture and Smart LiveStock,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 2020, vol. 318 LNICST. doi: 10.1007/978-3-030-45293-3_6.

D. N. Argade, S. D. Pawar, V. V. Thitme, and A. D. Shelkar, “Machine Learning: Review,” Int. J. Adv. Res. Sci. Commun. Technol., 2021, doi: 10.48175/ijarsct-1719.

C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by machine learning: A review,” Expert Systems with Applications. 2009. doi: 10.1016/j.eswa.2009.05.029.

A. A. Chaudhry, R. Mumtaz, S. M. Hassan Zaidi, M. A. Tahir, and S. H. Muzammil School, “Internet of Things (IoT) and Machine Learning (ML) enabled Livestock Monitoring,” 2020. doi: 10.1109/HONET50430.2020.9322666.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s J. Softw. Tools, 2000.

A. Zelinsky, “Learning OpenCV—Computer Vision with the OpenCV Library,” IEEE Robotics and Automation Magazine. 2009. doi: 10.1109/MRA.2009.933612.

T. Y. Lin et al., “Microsoft COCO: Common objects in context,” 2014. doi: 10.1007/978-3-319-10602-1_48.

Tsung-Yi Lin et al., “COCO - Common Objects in Context,” COCO Dataset, 2018.

X. Yang, F. Li, and H. Liu, “A survey of DNN methods for blind image quality assessment,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2938900.

R. Ravindran, M. J. Santora, and M. M. Jamali, “Multi-Object Detection and Tracking, Based on DNN, for Autonomous Vehicles: A Review,” IEEE Sensors Journal. 2021. doi: 10.1109/JSEN.2020.3041615.

V. M. T. Aleluia, V. N. G. J. Soares, J. M. L. P. Caldeira, and A. M. Rodrigues, “Livestock Monitoring: Approaches, Challenges and Opportunities,” Int. J. Eng. Adv. Technol., 2022, doi: 10.35940/ijeat.d3458.0411422.

J. Ophir Isaac, “IOT - LIVESTOCK MONITORING AND MANAGEMENT SYSTEM,” Int. J. Eng. Appl. Sci. Technol., vol. 5, no. 9, 2021, doi: 10.33564/ijeast.2021.v05i09.042.

J. Zhang, F. Kong, Z. Zhai, S. Han, J. Wu, and M. Zhu, “Design and development of IOT monitoring equipment for open livestock environment,” Int. J. Simul. Syst. Sci. Technol., 2016, doi: 10.5013/IJSSST.a.17.26.23.

J. C. Clanet and A. Ogilvie, “Farmer-herder conflicts and water governance in a semi-arid region of Africa,” Water Int., 2009, doi: 10.1080/02508060802677853.

R. V. C. Diogo et al., “Farmers’ and herders’ perceptions on rangeland management in two agroecological zones of Benin,” Land, 2021, doi: 10.3390/land10040425.

Raspberry Pi Foundation, “raspberry-pi-3-model-b Specifications,” Raspberry Pi Foundation, 2016. https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

Raspberry Pi Foundation, “Raspberry Pi Camera Module 2 Specification,” 2016. https://www.raspberrypi.com/products/camera-module-v2/

Electronicwings.com, “PIR Motion Sensor Interfacing with Raspberry Pi using Python,” Electronicwings.com, 2017. https://www.electronicwings.com/raspberry-pi/pir-motion-sensor-interfacing-with-raspberry-pi

J. BEKRAR, “Using a SIM800L GSM module with the Raspberry Pi (no battery),” bekyelectronics.com, 2022. https://bekyelectronics.com/sim800l-with-raspberry-pi/

N. Agnihotri, “RPi Python Programming 23: Interfacing a NEO-6MV2 GPS module with Raspberry Pi,” www.engineersgarage.com, 2022. engineersgarage.com/articles-raspberry-pi-neo-6m-gps-module-interfacing/

P. Lesse et al., “Transhumance en République du Bénin : états des lieux et contraintes,” Int. J. Biol. Chem. Sci., vol. 9, no. 5, 2016, doi: 10.4314/ijbcs.v9i5.37.

J. Ellison, K. Brinkmann, R. V. C. Diogo, and A. Buerkert, “Land cover transitions and effects of transhumance on available forage biomass of rangelands in Benin,” Environ. Dev. Sustain., 2021, doi: 10.1007/s10668-021-01947-3.

B. O. KPEROU GADO, I. TOKO IMOROU, O. AROUNA, H. SIDI IMOROU, and M. OUMOROU, “Déterminants des itinéraires de transhumance à la périphérie de la réserve de biosphère transfrontalière du W au Bénin,” J. Appl. Biosci., 2020, doi: 10.35759/jabs.152.5.

B. O. K. Gado, I. T. Imorou, O. Arouna, and M. Oumorou, “Caractérisation des parcours de transhumance à la périphérie de la réserve de biosphère transfrontalière du W au Bénin,” Int. J. Biol. Chem. Sci., 2020, doi: 10.4314/ijbcs.v14i2.3.

E. S. Muhamed, M. Ting, and S. L. M. Belaidan, “Livestock health monitoring using iot technology for Ethiopia,” J. Adv. Res. Dyn. Control Syst., 2019, doi: 10.5373/JARDCS/V11SP11/20193120.

K. Shah, K. Shah, B. Thakkar, and M. Hetal Amrutia, “Livestock Monitoring in Agriculture using IoT,” Int. Res. J. Eng. Technol., vol. 6, no. 4, 2019.

V. del Castillo, L. Sánchez-González, A. Campazas-Vega, and N. Strisciuglio, “Vision-Based Module for Herding with a Sheepdog Robot,” Sensors, vol. 22, no. 14, 2022, doi: 10.3390/s22145321.

A. Helwatkar, D. Riordan, and J. Walsh, “Sensor technology for animal health monitoring,” Int. J. Smart Sens. Intell. Syst., 2014, doi: 10.21307/IJSSIS-2019-057.

A. Herlin, E. Brunberg, J. Hultgren, N. Högberg, A. Rydberg, and A. Skarin, “Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture,” Animals. 2021. doi: 10.3390/ani11030829.

O. A. Adegbola, I. D. Solomon, and A. S. Oluwaseun, “A Remote Surveillance System for the Detection of Farmland Invasion by Cattle in Sub-Saharan African Country,” Int. J. Res. Rev., 2021, doi: 10.52403/ijrr.20210918.




DOI: http://dx.doi.org/10.52155/ijpsat.v34.2.4648

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Pélagie HOUNGUE

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.