Bayesian Tobit Quantile Regression Modeling In The Case of Length Hospital Stay of COVID-19 Patients

Chyntia Dwi Yan, Ferra Yanuar, Dodi Devianto

Abstract


COVID-19 (Coronavirus Disease 2019) is an acute respiratory syndrome infectious disease caused by SARS-CoV-2. The high number of positive cases of COVID-19 in West Sumatra resulted in many patients undergoing isolation and treatment in hospitals. The length of stay of patients varies for each patient because it is triggered by several factors. Data on length of stay for COVID-19 patients is a type of censored data. Therefore, this study aims to model censored data and identify factors that influence the length of stay of COVID-19 patients using the tobit quantile regression method and the Bayesian tobit quantile regression method. This study will also evaluate the goodness of the model using the RMSE and Pseudomodel goodness evaluation methods. The results showed that the Bayesian tobit quantile regression method was a better method in estimating the parameters of the model of length of stay for COVID-19 patients. Meanwhile, it was found that the age of the patient, the diagnosis of the patient in the Positive category and the number of comorbidities had a significant influence on the length of stay of COVID-19 patients.

Keywords


Censored Data, Tobit Quantile Regression, Bayesian Tobit Quantile Regression, COVID-19

Full Text:

PDF

References


Alhamzawi, R., dan Yu, K. 2012. Variable selection in quantile regression via Gibbs Sampling. Journal of Applied Statistics, 39(4), 799-813.

Bain, L.J. dan Engelhardt, M. 1992. Introduction to Probability and Mathematical Statistics. United States of America: Brooks/Cole.

Chai, T., dan Draxler, R. R. 2014: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE): Arguments Against Avoiding RMSE in The Literature. Geoscientific Model Development, 7, 1247-1250.

Davino, C., Furno, M. dan Vistocco, D. 2014. Quantile Regression Theory and Applications. John Wiley dan Sons, Ltd.

Feng, Y., Chen, Y., dan He, X. 2015. Bayesian quantile regression with approximate likelihood. Bernoulli, 21(2), 832-850.

Greene, W.H. 2008. Econometrics Analysis, 6th edition. Prentice Hall, New Jersey.

Gujarati, D.N. 1995. Basic Econometrics Third edition. McGraw-Hill International Editions, Economic Series

Handayani, Diah. dkk. 2020. Penyakit Virus Corona 2019. Jurnal Respirologi Indonesia, 40(2), 119-129.

Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/413/2020 tentang Pedoman Pencegahan dan Pengendalian Corona Virus Disease 2019 (COVID-19).

Koenker, R., dan Machado, dan Jose A.F. 1999. Goodness of Fit and Related inference Processes for Quatile Regression. Journal of The American Statistical Association. 94, 1296-1310.

Kozumi, H. dan G. Kobayashi. 2011. Gibbs Sampling Methods for Bayesian Quantile Regression. Journal of Statistical Computation and Simulation, 81, 1565-1578.

Portal Resmi Provinsi Sumatera Barat. 2020. Informasi Covid-19 Provinsi Sumatera Barat. https://sumbarprov.go.id/home/news. Diakses tanggal 10 Mei 2021.

Powell, J. 1986. Censored Regression Quantiles. Journal of Econometrics, 32, 143-155.

Sari, A. R., Rahman F., Wulandari A., dkk. 2020. Perilaku Pencegahan Covid-19 Ditinjau dari Karakteristik Individu dan Sikap Masyarakat. Jurnal Penelitian dan Pengembangan Kesehatan Masyarakat Indonesia. 32-37.

Satuan Pusat Penanganan COVID-19. 2020. Peta Sebaran. https://covid19.go.id/peta-sebaran. Diakses pada 10 Mei 2021.

Souza, F dkk. 2021. On The Analysis of Mortality Risk Factors for Hospitalized COVID-19 Patients : A Data-Driven Study using The Major Brazilian Database. PLoS ONE, 16, 1-21.

World Health Organization. 2020. Coronavirus. www.who.int. Diakses pada 10 Mei 2021.

Yanuar, F., Saputri, C., dan Devianto, D. 2020. Bayesian Inference for Pareto Distribution with Prior Conjugate and Prior Non Congjugate. Jurnnal Matematika dan Komputasi . 16(3), 382-390.

Yu, K., dan Stander, J. 2007. Bayesian Analysis of Tobit Quantile Regression Model. Journal of Econometrics, Vol. 137, 260-276.

Zhai, P., dkk. 2020. The Epidemiology, Diagnosis, and Treatment of COVID-19. Elsevier B.V. and International Society of Chemotherapy, 55, 1-12.




DOI: http://dx.doi.org/10.52155/ijpsat.v33.2.4438

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 chyntia dwi yan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.