Numerical Simulation Of The Energy Separation Effect In The Ranke-Hilsch Tube

Murodil Erkinjon Ugli Madaliev, Olimjon Obidjon Ugli Esonov, Barhayotjon Iftixorjon Ugli Maxsitaliyev, Tillaboyeva Farangiz Shavkatjonovna

Abstract


Currently, there are many applications of vortex technologies. The vortex effect is used in gas-dynamic cold generators and vortex refrigerating chambers. Vortex devices are also used as dehumidifiers, separators, for cooling and heating hydraulic fluids, separation of two-phase media, gas mixtures. Scientists are studying the applicability of vortex equipment for traditional and freeze-drying of agricultural products. However, the influence of the geometric parameters of vortex devices on the performance and energy efficiency of the temperature separation of gas flows has been poorly studied. Research aimed at finding opportunities and expanding the scope of application of vortex tubes is an urgent task. The article describes three-dimensional mathematical models of a swirling gas flow arising in a vortex tube. It presents the results of its implementation in the Comsol Multiphysics 5.6 software package. Thermodynamic and hydrodynamic characteristics confirm the effect of temperature separation in a vortex tube. The dependences of the temperature separation on the flow velocity at are obtained. For the three-dimensional vortex tube model, calculations were carried out using the turbulence model v2-f.


Keywords


Navier–Stokes equations, control volume method, SIMPLE method, QUICK scheme, Ranke-Hilsch tube.

Full Text:

PDF

References


A.P. Merkulov, Vortex effect and its application in engineering (Mashinostroenie, Moscow, 1969) 183 p.

G.F. Nellis, S.A. Klein, The application of vortex tubes to refrigeration cycles, in: 9th Int. Refrigerat. and Air Condition. Conf. (West Lafayette, USA, 2002)

B.L. Ivanov, B.G. Ziganshin, R.F. Sharafeev, I.R. Sagbiev, Theory atomization fluid nozzles, Bull. of Kazan State Agrar. Univer., 14(2(53)), 95–99 (2019)

B.L. Ivanov, B.G. Ziganshin, A.I. Rudakov, M.A. Lushnov, Assessment of distribution of drops of a disinfecting liquid by the surface processed, Bull. of Kazan State Agrar. Univer., 14(3(54)), 103–107 (2019)

R. Sabirov, A. Valiev, L. Karimova, A. Dmitriev, D. Khaliullin, Influence of physical factors on viability of microorganisms for plant protection, in: 18th Int. Sci. Conf. Engineer. for Rural Developm. Proc., vol. 18 (Latvia Univer. of Life Sci. and Technol. Faculty of Engineer., Jelgava, 22–24 May 2019) pp. 555–562

S. Eiamsa-ard, P. Promvonge, Review of Ranque-Hilsch effects in vortex tubes, Renew. Sustain. Energy Rev., 12(7), 1822–1842 (2008)

A.I. Leont’ev, Gasdynamic methods of temperature stratification, Fluid dynamics, 37(4), 512–536 (2002)

C.D. Fulton, Comments on the vortex tube, J. ASRE Refrigerat. Engng., 58 (1950) 9.

T. Cockerill, Ranque – Hilsh vortex tube, Master thesis (University of Cambridge, 1995)

A.S. Noskov, A.V. Chait, A.P. Butymova et al., Energy effectiveness and economics expediency of using of climatic systems based on vortex tube, Magaz. of civil engineer., 1, 17–23 (2011)

S. Eiamsa-ard, P. Promvonge, Review of Ranque-Hilsch effects in vortex tubes, Renew. Sustain. Energy Rev., 12, 1822–1842 (2008) 12.

C.M. Gao, Experimental study on the Ranque-Hilsch vortex tube, PhD thesis (Techn. Univer., Eindhoven, 2005)

Y. Xue, The working principle of a Ranque–Hilsch vortex tube, PhD thesis (School of Mechan. Engineer.; Univer. of Adelaide, Australia, 2013)

Y. Xue, M. Arjomandi, R. Kelso, Experimental study of the thermal separation in a vortex tube, Exp. Therm. Fluid Sci., 46, 175–182 (2013)

C. Gao, Experimental study on the Ranque – Hilsh vortex tube, PhD Study (2005) 151 p.

W. Frhlingsdorf, H. Unger, Numerical investigations of the compressible flow and the energy separation in the RanqueeHilsch vortex tube, Int. J. of Heat and Mass Transfer, 42, 415–422 (1999)

T. Farouk, B. Farouk, A. Gutsol, Simulation of gas species and temperature separation in the counter-flow RanqueeHilsch vortex tube using the large eddy simulation technique, Int. J. of Heat and Mass Transfer, 52, 3320–3333 (2009)

U. Behera, P.J. Paul, S. Kasthurirengan, R. Karunanithi, S.N. Ram, K. Dinesh et al., CFD analysis and experimental investigations towards optimizing the parameters of RanqueeHilsch vortex tube, Int. J. of Heat and Mass Transfer, 48, 1961–1973 (2005)

Malikov Z. M., Madaliev M. E. Numerical Simulation of Two-Phase Flow in a Centrifugal Separator //Fluid Dynamics. – 2020. – Т. 55. – №. 8. – С. 1012-1028. DOI: 10.1134/S0015462820080066

Son E., Murodil M. Numerical Calculation of an Air Centrifugal Separator Based on the SARC Turbulence Model //Journal of Applied and Computational Mechanics. – 2020. https://doi.org/10.22055/JACM.2020.31423.1871

Madraximov, M. M., Abdulkhaev, Z. E., & ugli Inomjonov, I. I. (2022). Factors Influencing Changes In The Groundwater Level In Fergana. International Journal of Progressive Sciences and Technologies, 30(2), 523-526.

Madaliev M. E., Navruzov D. P. Research of νt-92 turbulence model for calculating an axisymmetric sound jet //Scientific reports of Bukhara State University. – 2020. – Т. 4. – №. 2. – С. 82-90.

Маликов З. М., Мадалиев М. Э. Численное моделирование течения в плоском внезапно расширяющемся канале на основе новой двужидкостной модели турбулентности //Вестник Московского государственного технического университета им. НЭ Баумана. Серия Естественные науки. – 2021. – №. 4. – С. 24-39.

Abdulkhaev, Z. E., Abdurazaqov, A. M., & Sattorov, A. M. (2021). Calculation of the Transition Processes in the Pressurized Water Pipes at the Start of the Pump Unit. JournalNX, 7(05), 285-291.

Madaliev E. et al. Comparison of turbulence models for two-phase flow in a centrifugal separator //E3S Web of Conferences. – EDP Sciences, 2021. – Т. 264.

Маликов З. М., Мадалиев М. Э. Численное исследование воздушного центробежного сепаратора на основе модели турбулентности SARC //Проблемы вычислительной и прикладной математики. – 2019. – №. 6 (24). – С. 72-82.

Мадалиев М. Э. У. Численное моделирование течения в центробежном сепараторе на основе моделей SA и SARC //Математическое моделирование и численные методы. – 2019. – №. 2 (22).

Abdulkhaev, Zokhidjon, Mamadali Madraximov, Axmadullo Abdurazaqov, and Mardon Shoyev. "Heat Calculations of Water Cooling Tower." Uzbekistan Journal of Engineering and Technology (2021).

Malikov Z. M., Madaliev E. U., Madaliev M. E. Numerical modeling of a turbulent flow in a flow flat plate with a zero gradient of pressure based on a standard k-ε and modernized k-ε models //Scientific-technical journal. – 2019. – Т. 23. – №. 2. – С. 63-67.

Abdulkhaev, Zokhidjon Erkinjonovich, Axmadullo Muxammadovich Abdurazaqov, and Abdusalom Mutalipovich Sattorov. "Calculation of the Transition Processes in the Pressurized Water Pipes at the Start of the Pump Unit." JournalNX 7, no. 05: 285-291.

ABDULKHAEV, ZOKHIDJON ERKINJONOVICH. "Protection of Fergana City from Groundwater." Euro Afro Studies International Journal 6 (2021): 70-81.

Madaliev M. E. Numerical research ν t-92 turbulence model for axisymmetric jet flow //Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya" Vychislitelnaya Matematika i Informatika". – 2020. – Т. 9. – №. 4. – С. 67-78.

Мадрахимов, М. М., З. Э. Абдулҳаев, and Н. Э. Ташпулатов. "Фарғона Шаҳар Ер Ости Сизот Сувлари Сатҳини Пасайтириш." Фарғона Политехника Институти Илмий–Техника Журнали 23, no. 1 (2019): 54-58.

Arifjanov, A., Otaxonov, M., & Abdulkhaev, Z. (2021). Model of groundwater level control using horizontal drainage. Irrigation and Melioration, 2021(4), 21-26.

Malikov Z. M., Madaliev E. U. Mathematical simulation of the speeds of ideally newtonovsky, incompressible, viscous liquid on a curvilinearly smoothed pipe site //Scientific-technical journal. – 2019. – Т. 22. – №. 3. – С. 64-73.

Маликов З. М., Мадалиев М. Э. Численное исследование закрученного турбулентного течения в канале с внезапным расширением //Вестник Томского государственного университета. Математика и механика. – 2021. – №. 72. – С. 93-101.




DOI: http://dx.doi.org/10.52155/ijpsat.v31.2.4231

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Murodil Erkinjon Ugli Madaliev, Olimjon Obidjon Ugli Esonov, Barhayotjon Iftixorjon Ugli Maxsitaliyev, Tillaboyeva Farangiz Shavkatjonovna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.