The Influence Of Alcohol Compound On Biodiesel Production Through Esterification Reaction: A Mini Review

Niza Lian Pernaid, Umar Kalmar Nizar, Sri Benti Etika, Minda Azhar, Rita Sundari

Abstract


Biodiesel is a renewable alternative energy that has been developed replacing conventional fuel material. Biodiesel can be produced from estereification reaction. Alcohol compound is a substantial reactant for producing biodiesel. The alcohol will donate )-acyl group to yield biodiesel. Several best alcohol compounds that yield the highest conversion is methanol with FFA conversion achieved 96 – 99,1 %. Methanol yield the highest conversion because it has low steric hindrance so the thermodynamically of esterification reaction getting fast and the FFA conversion becoming high. In the meantime, buthanol gives the lowest, i.e.  87 – 94%. Buthanol has high steric hindrance resulting low FFA conversion. Biodiesel with low FFA conversion is difficult to be used as fuel material, This type of biodiesel may damage injection channel for fuel material and with high acid number may cause engine corrosion.  

Keywords


Alcohol, Biodiesel, Free Fatty Acid

Full Text:

PDF

References


A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4. pp. 2070–2093, May-2012, doi: 10.1016/j.rser.2012.01.003.

T. Zhang, W. Li, Y. Jin, and W. Ou, “Synthesis of sulfonated chitosan-derived carbon-based catalysts and their applications in the production of 5-hydroxymethylfurfural,” Int. J. Biol. Macromol., vol. 157, pp. 368–376, 2020, doi: 10.1016/j.ijbiomac.2020.04.148.

A. P. da Luz Corrêa, R. R. C. Bastos, G. N. da Rocha Filho, J. R. Zamian, and L. R. V. da Conceição, “Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction,” RSC Adv., vol. 10, no. 34, pp. 20245–20256, 2020, doi: 10.1039/d0ra03217d.

V. F. de Oliveira, E. J. S. Parente, E. D. Manrique-Rueda, C. L. Cavalcante, and F. M. T. Luna, “Fatty acid alkyl esters obtained from babassu oil using C1–C8 alcohols and process integration into a typical biodiesel plant,” Chem. Eng. Res. Des., vol. 160, pp. 224–232, 2020, doi: 10.1016/j.cherd.2020.05.028.

O. N. Syazwani, U. Rashid, M. S. Mastuli, and Y. H. Taufiq-Yap, “Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata),” Renew. Energy, vol. 131, pp. 187–196, 2019, doi: 10.1016/j.renene.2018.07.031.

A. D. de Oliveira, A. F. de Sá, M. F. Pimentel, J. G. A. Pacheco, C. F. Pereira, and M. S. Larrechi, “Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 170, pp. 56–64, 2017, doi: 10.1016/j.saa.2016.07.006.

I. M. Lokman, U. Rashid, R. Yunus, and Y. H. Taufiq-Yap, “Carbohydrate-derived solid acid catalysts for biodiesel production from low-cost feedstocks: A review,” Catal. Rev. - Sci. Eng., vol. 56, no. 2, pp. 187–219, 2014, doi: 10.1080/01614940.2014.891842.

L. Wu et al., “Acid-treatment of bio-oil in methanol: The distinct catalytic behaviours of a mineral acid catalyst and a solid acid catalyst,” Fuel, vol. 212, pp. 412–421, 2018, doi: 10.1016/j.fuel.2017.10.049.

A. M. Khan and N. Fatima, “Synthesis of biodiesel from the oily content of marine green alga Ulva fasciata,” J. Chem. Soc. Pakistan, vol. 37, no. 5, pp. 1040–1046, 2015.

H. Lugo-Méndez, M. Sánchez-Domínguez, M. Sales-Cruz, R. Olivares-Hernández, R. Lugo-Leyte, and A. Torres-Aldaco, “Synthesis of biodiesel from coconut oil and characterization of its blends,” Fuel, vol. 295, no. March, 2021, doi: 10.1016/j.fuel.2021.120595.

Y. T. Wang et al., “Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst,” Renew. Energy, vol. 139, pp. 688–695, 2019, doi: 10.1016/j.renene.2019.02.111.

B. Zhang et al., “Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction,” Renew. Energy, vol. 164, pp. 824–832, 2021, doi: 10.1016/j.renene.2020.09.076.

S. K. Sangar et al., “Effective biodiesel synthesis from palm fatty acid distillate (PFAD)using carbon-based solid acid catalyst derived glycerol,” Renew. Energy, vol. 142, pp. 658–667, 2019, doi: 10.1016/j.renene.2019.04.118.

Z. Wan, J. K. Lim, and B. H. Hameed, “Chromium-tungsten heterogeneous catalyst for esterification of palm fatty acid distillate to fatty acid methyl ester,” J. Taiwan Inst. Chem. Eng., vol. 54, pp. 64–70, 2015, doi: 10.1016/j.jtice.2015.03.020.

S. K. Sangar, C. S. Lan, S. M. Razali, M. S. A. Farabi, and Y. H. Taufiq-Yap, “Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst,” Energy Convers. Manag., vol. 196, pp. 1306–1315, 2019, doi: 10.1016/j.enconman.2019.06.073.

and M. S. C. L. A. Sanchez-Olmos, J. Medina-Valtierra, K. Sathish-Kumar, “Sulfonated Char From Waste Tire Rubber Used as Strong Acid Catalyst for Biodiesel Production,” Environ. Prog. Sustain. Energy, pp. 1–8, 2016, doi: 10.1002/ep.

Y. T. Wang et al., Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst, vol. 139. Elsevier Ltd, 2019.

L. A. S. do Nascimento, L. M. Z. Tito, R. S. Angélica, C. E. F. da Costa, J. R. Zamian, and G. N. da Rocha Filho, “Esterification of oleic acid over solid acid catalysts prepared from Amazon flint kaolin,” Appl. Catal. B Environ., vol. 101, no. 3–4, pp. 495–503, 2011, doi: 10.1016/j.apcatb.2010.10.021.

S. Mulalee, P. Srisuwan, and M. Phisalaphong, “Influences of operating conditions on biocatalytic activity and reusability of Novozym 435 for esterification of free fatty acids with short-chain alcohols: A case study of palm fatty acid distillate,” Chinese J. Chem. Eng., vol. 23, no. 11, pp. 1851–1856, 2015, doi: 10.1016/j.cjche.2015.08.016.

S. Niu, Y. Ning, C. Lu, K. Han, H. Yu, and Y. Zhou, “Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo,” Energy Convers. Manag., vol. 163, no. 17923, pp. 59–65, 2018, doi: 10.1016/j.enconman.2018.02.055.

L. H. Tamborini, M. E. Casco, M. P. Militello, J. Silvestre-Albero, C. A. Barbero, and D. F. Acevedo, “Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties,” Fuel Process. Technol., vol. 149, pp. 209–217, 2016, doi: 10.1016/j.fuproc.2016.04.006.

N. N. Tran, E. J. McMurchie, and Y. Ngothai, “Biodiesel Production from Recycled Grease Trap Waste: A Case Study in South Australia. Part 1: The Pre-Treatment of High Free Fatty Acid Feedstock,” ChemistrySelect, vol. 3, no. 9, pp. 2509–2514, 2018, doi: 10.1002/slct.201800065.

H. D. Hanh, N. T. Dong, K. Okitsu, R. Nishimura, and Y. Maeda, “Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition,” Renew. Energy, vol. 34, no. 3, pp. 780–783, 2009, doi: 10.1016/j.renene.2008.04.001.

S. R. Kirumakki, N. Nagaraju, and K. V. R. Chary, “Esterification of alcohols with acetic acid over zeolites Hβ, HY and HZSM5,” Appl. Catal. A Gen., vol. 299, no. 1–2, pp. 185–192, 2006, doi: 10.1016/j.apcata.2005.10.033.

N. Gokulakrishnan, A. Pandurangan, and P. K. Sinha, “Esterification of acetic acid with propanol isomers under autogeneous pressure: A catalytic activity study of Al-MCM-41 molecular sieves,” J. Mol. Catal. A Chem., vol. 263, no. 1–2, pp. 55–61, 2007, doi: 10.1016/j.molcata.2006.08.005.

S. Q. Lopes, F. H. Holanda, D. E. Q. Jimenez, L. A. S. do Nascimento, A. N. Oliveira, and I. M. Ferreira, “Use of Oxone® as a Potential Catalyst in Biodiesel Production from Palm Fatty Acid Distillate (PFAD),” Catal. Letters, no. 0123456789, pp. 24–26, 2021, doi: 10.1007/s10562-021-03698-2.

B. R. Jermy and A. Pandurangan, “A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol,” J. Mol. Catal. A Chem., vol. 237, no. 1–2, pp. 146–154, 2005, doi: 10.1016/j.molcata.2005.04.034.

J. C. Juan, J. Zhang, and M. A. Yarmo, “Structure and reactivity of silica-supported zirconium sulfate for esterification of fatty acid under solvent-free condition,” Appl. Catal. A Gen., vol. 332, no. 2, pp. 209–215, 2007, doi: 10.1016/j.apcata.2007.08.016.

I. M. Ibrahim, J. Jai, and M. A. Hashim, “Comparative inhibition effect of synthesized fatty amides mixture, pyridine and pyrrole on carbon steel in saline environment,” Appl. Mech. Mater., vol. 575, pp. 206–209, 2014, doi: 10.4028/www.scientific.net/AMM.575.206.

E. N. Ferreira et al., “Investigation of the thermal degradation of the biolubricant through TG-FTIR and characterization of the biodiesel – Pequi (Caryocar brasiliensis) as energetic raw material,” Fuel, vol. 245, no. February, pp. 398–405, 2019, doi: 10.1016/j.fuel.2019.02.006.




DOI: http://dx.doi.org/10.52155/ijpsat.v31.1.4050

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Niza Lian Pernaid, Umar Kalmar Nizar, Sri Benti Etika, Minda Azhar, Rita Sundari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.