Formulation de l’Algorithme de Verlet à Partir de la Dérivée Fractionnaire Conforme
Abstract
Ce travail consiste à donner une nouvelle formulation de l’algorithme de Verlet dans le cas où on utilise la dérivation fractionnaire conforme à la place de la dérivée entière
Keywords
Full Text:
PDFReferences
Tao Pang . An Introduction to Computational Physics Second Edition. University of Nevada, Las Vegas. Cambridge University Press . © T. Pang 2006
Jimmy RousseL . Cours d’introduction à l’analyse numérique – femto-physique.fr. Copyright © 2021 Jimmy Roussel
R. Khalil , M. Al Horani , A. Yousef, M. Sababheh. A new fractional derivative with classical properties .Department of Mathematics, The University of Jordan, Al Jubaiha, Amman 11942, Jordan- Department of Basic Sciences, Princess Sumaya University For Technology, Al Jubaiha, Amman 11941, Jordan-cDepartment of Mathematics, Sharjah University, Sharjah, United Arab Emirates
Douglas R. Anderson. Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives .Journal of American Mathematical Society. October 2017
Won Sang Chung. Fractional Newton mechanics with conformable fractional derivative
Department of Physics and Research Institute of Natural Science, College of Natural Science, Gyeongsang National University, Jinju
-701, Republic of Korea
Thabet Abdeljawad. On conformable fractional calculus.Department of Mathematics and General Sciences, Prince Sultan University-Riyadh-KSA, Saudi Arabia.Department of Mathematics, Çankaya University, 06530, Ankara, Turkeyv
DOI: http://dx.doi.org/10.52155/ijpsat.v30.2.3984
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 rasolomampiandry gilbert, Randriamaroson Rivo, Randimbindrainibe Falimanana
This work is licensed under a Creative Commons Attribution 4.0 International License.