Formulation de l’Algorithme de Verlet à Partir de la Dérivée Fractionnaire Conforme

Rasolomampiandry Gilbert, Randriamaroson Rivo, Randimbindrainibe Falimanana

Abstract


Ce travail consiste à donner une nouvelle formulation de l’algorithme de Verlet dans le cas où on utilise   la dérivation fractionnaire conforme à la place de la dérivée entière


Keywords


Dérivation fractionnaire conforme - algorithme de Verlet- accélération fractionnaire

Full Text:

PDF

References


Tao Pang . An Introduction to Computational Physics Second Edition. University of Nevada, Las Vegas. Cambridge University Press . © T. Pang 2006

Jimmy RousseL . Cours d’introduction à l’analyse numérique – femto-physique.fr. Copyright © 2021 Jimmy Roussel

R. Khalil , M. Al Horani , A. Yousef, M. Sababheh. A new fractional derivative with classical properties .Department of Mathematics, The University of Jordan, Al Jubaiha, Amman 11942, Jordan- Department of Basic Sciences, Princess Sumaya University For Technology, Al Jubaiha, Amman 11941, Jordan-cDepartment of Mathematics, Sharjah University, Sharjah, United Arab Emirates

Douglas R. Anderson. Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives .Journal of American Mathematical Society. October 2017

Won Sang Chung. Fractional Newton mechanics with conformable fractional derivative

Department of Physics and Research Institute of Natural Science, College of Natural Science, Gyeongsang National University, Jinju

-701, Republic of Korea

Thabet Abdeljawad. On conformable fractional calculus.Department of Mathematics and General Sciences, Prince Sultan University-Riyadh-KSA, Saudi Arabia.Department of Mathematics, Çankaya University, 06530, Ankara, Turkeyv




DOI: http://dx.doi.org/10.52155/ijpsat.v30.2.3984

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 rasolomampiandry gilbert, Randriamaroson Rivo, Randimbindrainibe Falimanana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.