Geophysical Investigation Of Possible Gold Mineralization Potential Zones Using A Combined Airborne Magnetic Data Of Lower Sokoto Basin And ITS Environs, Northwestern Nigeria

M. M. Lawal, K. A. Salako, M Abbas, T. Adewumi, A. I. Augie, M. Khita


Delineation of possible gold mineralization within the lower Sokoto basin from analyses and interpretation of airborne magnetic and radiometric datasets has been successfully carried out in this present study. In achieving this, some enhancing filters such as; first and second vertical derivatives, horizontal derivatives, and analytic signal

and center for exploration targeting were applied on the total magnetic field of the study area to delineate near-surface structures that might host the gold deposit in the study area. Also Source Parameter Imaging was used to estimate the depth of the buried structures. K/eTh ratio was performed to identify the hydrothermal alterations zones for gold mineralization within the study area. The first and second VD, the horizontal derivatives and the CET revealed major structures like trending NE-SW, NNE-SSW and NW-SE. The AS revealed the boundary demarcation between the crystalline rocks and the sedimentary rocks. The crystalline rocks occupy the eastern and western part of the study area with the sedimentary rocks in between lying NW-SE. The SPI result reveals a shallow depth of 68.21- 101.60 meters. The radiometric data enhancement (K/eTh) helped in identifying areas of hydrothermal altered zones; this could be observed at the NE and some portions along the SW zone of the study area which are favorable alteration environments for a variety of ore deposits. The areas affected by hydrothermal alteration are considered mineral potential zones and may be promising sites for gold mineralization.


Aeromagnetic; Aeroradiometric; Hydrothermal Alteration: Center for Exploration Targeting (CET); Lineaments.

Full Text:



Adekeye, J. I. D., Ajadi, J., Adedoyin, A. D., Bamigboye, O. S., &

Alabi, A. G. F. (2015). Origin and Structural Control of Gold

Mineralization in Bishewa Area, Central Nigeria. CPJ, 2015002, 211012.

Adepelumi, A. A., & Falade, A. H. (2017). Combined high-resolution

aeromagnetic and radiometric mapping of uranium mineralization and

tectonic settings in Northeastern Nigeria. Acta Geophysica, 65(5),


Adewumi, T., & Salako, K. A. (2018). Delineation of mineral potential

zone using high resolution aeromagnetic data over part of Nasarawa

State, North Central, Nigeria. Egyptian journal of petroleum, 27(4),


Ajibade, A.C. and Wright, J.B. (1989). The Togo-Benin-Nigeria

shield: evidence of crustal aggregation in the Pan-African belt.

Tectonophys 165, pp. 125-12.

Ajibade, A.C., Woakes, M. and Rahaman, M.A. (1987). Proterozoic

crustal development in the Pan-African regime of Nigeria. In: A.

Krooner (Editor), Proterozoic Crustal Evolution. Geodynamics. Ser.,

Am. Geophysics Union, 17: pp259-271.

Armstrong M, Rodeghiero A (2006). Airborne Geophysical Techniques in

Aziz. Coal Operators’ Conference, University of Wollongong and the

Australasian Institute of Mining and Metallurgy pp. 113-131. Briggs IC

(1974). Machine contouring using minimum curvature. Geophysics


Ajibade, A.C., Woakes, M. and Rahaman, M.A. (1987). Proterozoic

crustal development in the Pan-African regime of Nigeria. In: A.

Krooner (Editor), Proterozoic Crustal Evolution. Geodynamics. Ser.,

Am. Geophysics Union, 17: pp259-271.

Akande, S. O., & Kinnaird, J. (1993). Characterization and origin pf

ore-forming fluids in the Nigeria mineral belts. In Quadrennial IAGOD

symposium (pp. 199-218).

Amigun, J. O., Afolabi, O., & Ako, B. D. (2012). Application of

airborne magnetic datato mineral exploration in the Okene Iron Ore

Province of Nigeria. International Research Journal of Geology and

Mining, 2(6), 132-14.

Biegert, E. K., Chapin, D. A., Yalamanchili, S. V., Daggett, P. H.,

Pearson, W. C., Bird, D. E., ... & Nakatsuka, T. (1998). Basin

Studies. In Geologic Applications of Gravity and Magnetics: Case

Histories (pp. 45-72). Society of Exploration Geophysicists and

American Association of Petroleum Geologists.

Chukwuka, C. (2016). Integrated Landsat ETM and Aeromagnetic Survey

for enhanced structural and geothermal interpretation of part of

Calabar Flank. Unpubl. Thesis, 113p.

Collins R (2005) Aeromagnetic surveys principles, practice and

interpretations. Geosoft, Netherlands.


Geophysical Expression of Low Sulphidation Epithermal Au‐Ag Deposits

and Exploration Implications–Examples from the Hokusatsu Region of SW

Kyushu, Japan–. Resource Geology, 48(2), 75-86.

Dentith M, Mudge ST (2014) Geophysics for the mineral exploration

geoscientist. Cambridge Univesity Press, Cambridge. ISBN


Garba, (1994). Tourmalinization related to Late‐Proterozoic‐Early

Paleozoic Lode Gold Mineralization in Birnin Yauri Area,

Nigeria, Mineralium Deposita 31(1994):201.

Gupta, V. H., & Ramani, S. D. (1982). Optimum Second Vertical

Derivative Application in Geological Mapping and Mineral Exploration.

Geophysics, 24, 582-601.

Hinze, W. J., Von Frese, R. R., & Saad, A. H. (2013). Gravity and

magnetic exploration: Principles, practices, and applications.

Cambridge University Press.

Holden, E. J., Dentith, M., & Kovesi, P. (2008). Towards the automated

analysis of regional aeromagnetic data to identify regions prospective

for gold deposits. Computers & Geosciences, 34(11), 1505-1513.

Holden, E. J., Fu, S. C., Kovesi, P., Dentith, M., Bourne, B. and

Hope, M., 2011. Automatic Identification of Responses from Porphyry

Intrusive Systems within Magnetic Data Using Image Analysis. Journal

of Applied Geophysics, Vol. 74, pp. 255 - 262.

Hoover, D. B., Heran, W. D., & Hill, P. L. (1992). The geophysical

expression of selected mineral deposit models. US Department of the

Interior, Geological Survey.

Irvine, R. J., & Smith, M. J. (1990). Geophysical exploration for

epithermal gold deposits. Journal of Geochemical exploration, 36(1-3),


Keating, P. and Sailhac, P. (2004). Use of the Analytical Signal to

Identify Magnetic Anomalies due to Kimberlite Pipes. Geophysics


Kovesi, P., 1991. Image Features from Phase Congruency. Videre:

Journal of Computer Vision Research, the MIT Press, Vol. 1, No. 3.

Kovesi, P., 1997. Symmetry and Asymmetry from Local Phase.AI’97, Tenth

Australian Joint Conference on Artificial Intelligence.

Lam, L., Lee, S. W. and Suen, C. Y., 1992. Thinning Methodologies—A

Comprehensive Survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 14, No. 9, pp. 879.

Macnae, J. (1995). Applications of geophysics for the detection and

exploration of kimberlites and lamproites. Journal of Geochemical

Exploration, 53(1-3), 213-243.

McCurry, P. (1978). Geology of degree sheets 19 (Zuru), 20 (Chafe),

and part of 19 (Katsina), Nigeria, Overseas Geological Mineral

Resource., 53p.

Morrell, A. E., Locke, C. A., Cassidy, J., & Mauk, J. L. (2011).

Geophysical characteristics of adularia-sericite epithermal

gold-silver deposits in the Waihi-Waitekauri region, New Zealand.

Economic Geology, 106(6), 1031-1041.

Obaje, N. G. (2009). Geology and mineral resources of Nigeria (Vol.

. Springer.

Opara, A. I., Oneyekuru, S. O., Mbagwu, E. C., Emberga, T. T.,

Ijeomah, K. C. & Nwokocha, K. C. (2015). Integrating Landsat – ETM and

Aeromagnetic Data for Enhanced Structural Interpretation over Naraguta

Area, North-Central Nigeria. International J. of Scientific and

Engineering Research, 6(9), 10 .

Opara, A. I., Onyewuchi, R. A., Selemo, A. O. I., Onyekuru, S. O.,

Ubechu, B. O., Emberga, T. T., Ibim, D. F., & Nosiri, O. P. (2014).

Structural and Tectonic Features of Ugep and Environs, Calabar Flank,

Southeastern Nigeria: Evidences from aeromagnetic and Landsat-ETM

data. Mittei lungenKlosterneuburg, 64, 22.

Osinowo, O. O., Akanji, A. O., & Olayinka, A. I. (2014). Application

of high-resolution aeromagnetic data for basement topography mapping

of Siluko and environs, southwestern Nigeria. Journal of African Earth

Sciences, 99, 637-651.

Ostrovskiy, E.A. (1975) Antagonism of Radioactive Elements in Well

Rock Alteration Fields and Its Use in Aerogamma Spectrometric

Prospecting. International Geological Review, 17, 461-468.

Power, M., Belcourt, G., & Rockel, E. (2004). Geophysical methods for

kimberlite exploration in northern Canada. The Leading Edge, 23(11),


Reeves, C. (2005). Aeromagnetic surveys: principles, practice and

interpretation (Vol. 155). Toronto: Geosoft.

Roest, W.R, Verhoef, J., and Pilkington, M. (1992). Magnetic

interpretation using the 3-D analytical Signal. Geophysics


Roux, A. (1967). The Application of Geophysics to Gold Exploration in

South Africa 425‐438.

Salako, K. A. (2014). Depth to basement determination using Source

Parameter Imaging (SPI) of aeromagnetic data: An application to upper

Benue Trough and Borno Basin, Northeast, Nigeria. Academic Research

International, 5(3), 74.

Silva, A.M., Pires, A.C.B., Mccafferty, A., de Moraes, R.A.V. and Xia,

H. (2003) Application of Airborne Geophysical Data to Mineral

Exploration in the Uneven Exposed Terrains of the Rio Das Velhas

Greenstone Belt. Revista Brasileira de Geociências, 33, 17-28.

Core D, Buckingham A, Belfield S. Detailed structural analysis of magnetic

data done quickly and objectively, SGEG Newsletter; 2009.

Wemegah, D. D., Preko, K., Noye, R. M., Boadi, B., Menyeh, A., Danuor,

S. K., & Amenyoh, T. (2015). Geophysical interpretation of possible

gold mineralization zones in Kyerano, south-western Ghana using

aeromagnetic and radiometric datasets.



  • There are currently no refbacks.

Copyright (c) 2021 M. M Lawal, Kazeem A. Salako, Taiwo Adewumi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.